期刊文献+

硅纳米晶存储器的耐受性研究

Endurance Research on the Silicon Nano-Crystal Memory
原文传递
导出
摘要 首先介绍了硅纳米晶粒的制备工艺以及硅纳米晶存储器件的基本特性。接着重点探讨了硅纳米晶存储器耐久性退化的物理机制,发现应力引起的界面陷阱是耐受性退化的主要原因。随后,同时采用多种分析手段,如电荷泵法和CV曲线分析法对界面陷阱的退化机理进行了更深入细致的研究。从界面陷阱在禁带中的能级分布中发现,相较于未施加应力时界面陷阱的双峰分布,施加应力后产生了新的Pb1中心的双峰。最后,分别从降低擦写电压和对载流子预热的角度提出了三种新的编程方法,有效提高了硅纳米晶存储器件的耐受性。 The preparation technology of the silicon nano-crystal and the basic characteristic of the silicon nano-crystal memory are introduced firstly. Then the physical mechanism of the silicon nano-erystal memory endurance degradation is discussed deeply. It is found that the interface trap induced by the stress is the dominant reason of the endurance degradation. Subsequently, the degradation mechanism of the interface trap is studied in detail with various analysis methods, such as the charge pumping method and CV curve analysis method. From the energy level distri- bution of the interface trap in the forbidden band, it is found that compared with the double-peak distribution of interface traps without the stress, the new P~,-type double-peak is generated after stressing. Finally, from the angles of the erase voltage reducing and carrier preheating, three new programming methods are proposed, and the endurance of silicon nano-crystal memory de- vices is effectively improved.
出处 《微纳电子技术》 CAS 北大核心 2014年第8期481-488,共8页 Micronanoelectronic Technology
基金 国家重点基础研究发展计划(973计划)资助项目(2010CB934200 2011CBA00600) 国家自然科学基金资助项目(61176073 61221004 61306107) 中国博士后科学基金面上资助项目(2014M550866) 成都信息工程学院科研基金资助项目(KYTZ201318)
关键词 硅纳米晶存储器 耐受性 界面陷阱 能级分布 退化 silicon nano-crystal memory endurance interface trap energy level distribution degradation
  • 相关文献

参考文献25

  • 1TIWARI S,RANA F,CHAN K,et al.Volatile and non-volatile memories in silicon with nano-crystal storage[C]//Proceedings of the International Electron Devices Meeting.Washington,DC,USA,1995:521-524.
  • 2WANGJ C,LIN C T,HUANG P W,et al.Multilevel ultrafast and disturb-free flash memory with double embedded Au and Gd2O3nanocrystals[C]//Proceedings of 2013 International Symposium onVLSI Technology,Systems,and Applications(VLSI-TSA).Hsinchu,China,2013:1-2.
  • 3SINGH P K,BISHT G,AULUCK K,et al.Performance and reliability study of single-layer and dual-layerplatinum nanocrystal flash memory devices under NAND operation[J].IEEE Transactions on Electron Devices,2010,57(8):1829-1837.
  • 4XU Z G,HUO Z L,ZHU C X,et al.Performance-improved nonvolatile memory with aluminum nanocrystals embedded in Al2O3for high temperature applications[J].Journal of Applied Physics,2011,110(10):104514-1-104514-5.
  • 5YANG S Q,WANG Q,ZHANG M H,et al.Titaniumtungsten nanocrystalsembedded in a SiO2/Al2O3gate dielectricstack for low-voltage operation innon-volatile memory[J].Nanotechnology,2010,21(24):245201-1-245201-6.
  • 6YANG R,ZHU C X,MENG J L,et al.Isolated nanographene crystals for nano-floating gate in charge trapping memory[J].Scientific Reports,2013,3:2126-1-2126-7.
  • 7de BLAUWE J,OSTRAAT M,GREENM L,et al.A novel,aerosol-nanocrystal floating-gate device for non-volatile memory applications[C]//Proceedings of International Electron Devices Meeting.San Francisco,CA,USA,2000(46):683-686.
  • 8KAPETANAKIS E,NORMAND P,TSOUKALAS D,et al.Charge storage and interface states effects in Si-nanocrystal memory obtained using low-energy Si+implantation and annealing[J].Applied Physics Letters,2000,77(21):3450-3452.
  • 9MA K,FENG J Y,ZHANG Z J.Improved photoluminescence of silicon nanocrystals in silicon nitride prepared by ammonia sputtering[J].Nanotechnology,2006,17(18):4650-4653.
  • 10GUARINI K W,BLACK C T,ZHANG Y,et al.Low voltage,scalable nanocrystal flash memory fabricated by templated self assembly[C]//Proceedings of IEEE International Electron Devices Meeting.Washington,DC,USA,2003:22.2.1-22.2.4.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部