期刊文献+

Microstructure and texture characterization of superplastic Al-Mg-Li alloy 被引量:4

超塑Al-Mg-Li合金的显微组织与织构特性(英文)
下载PDF
导出
摘要 A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed. 采用一种新型形变热处理方法制备细晶Al-Mg-Li合金板材,研究静态再结晶退火对合金板材晶粒组织及超塑变形行为的影响。结果表明,晶粒尺寸、形状和织构的分布沿板材法向方向存在明显不同;表面层的晶粒组织细小、等轴,含有旋转cubeND{001}<310>取向;中心层具有粗大、长条状晶粒,含有α取向线的织构组分。随着再结晶温度的升高,整个板材的晶粒尺寸长大,中心层晶粒纵横比减小,表面层织构强化而中心层织构弱化,超塑性伸长率下降。升高再结晶温度导致整个板材内的旋转cubeND{001}<310>织构组分强化而α取向线的织构弱化。分析了不同温度下再结晶织构的形成机制。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2079-2087,共9页 中国有色金属学报(英文版)
基金 Project(51205419)supported by the National Natural Science Foundation of China
关键词 5A90 Al-Li alloy thermomechanical processing TEXTURE SUPERPLASTICITY RECRYSTALLIZATION 5A90铝锂合金 形变热处理 织构 超塑性 再结晶
  • 相关文献

参考文献3

二级参考文献53

  • 1王淑云,张晓博,崔建忠,张彩培.两种Al-Mg合金超塑性能的对比研究[J].热加工工艺,1997,26(1):20-22. 被引量:5
  • 2吴诗悖.金属超塑性变形理论[M].北京:国防工业出版社,1997..
  • 3VALIEV R Z, ZEHETBAUER M J, ESTRIN Y, HOPPEL H W, IVANISENKO Y, HAHN H, WILDE G, ROVEN H J, SAUVAGE X,LANGDON T (2 The innovation potential of bulk nanostructured materials [J]. Adv Eng Mater, 2007, 9(7): 527 533.
  • 4VALIEV R Z, ISLAMGALIEV R K, ALEXANDROV I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog Mater Sci, 2000, 45(2): 103-189.
  • 5VALIEV R Z, ENIKEEV N A, LANGDON T G Towards superstrength of nanostmctured metals and alloys produced by SPD [J]. Kovove Mater, 2011, 49:1- 9.
  • 6VALIEV R. Nanostruc'ing of metals by severe plastic deformation for advanced properties [J]. Nature Mater, 2004, 3(8): 511-516.
  • 7ZHILYAEV A P, LANGDON T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog Mater Sci, 2008, 53(6): 893-979.
  • 8LIU M P, ROVEN H J, LIU X T, UNGAR T, BALOGH L, MURASHKIN M, VALIEV R Z. Grain refinement in nanostructured A1-Mg alloys subjected to high pressure torsion [J]. J Mater Sci, 2010, 45: 4659-4664.
  • 9YAMAKOV V, WOLF D, PHILLPOT S R, GLEITER H. Dislocation-dislocation and dislocation-twin reactions in nanocrystalline AI by molecular dynamics simulation [J]. Acta Mater, 2003, 51(14): 4135-4147.
  • 10ZHU Y T, LIAO X Z, WU X L. Deformation twinning in bulk nanocrystalline metals: Experimental observations [J]. JOM, 2008, 60(9): 60-64.

共引文献12

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部