摘要
针对多变量、非线性、强耦合性的倒立摆系统,运用牛顿-欧拉方法建立了倒立摆的数学模型,然后对该模型分别进行LQR控制。在LQR控制中,权矩阵Q和R的选取直接影响着结构的动力反应和控制力。在标准蛙跳算法对权矩阵Q和R进行优化的基础上,通过采取新的最差青蛙跳跃策略能有效提高算法的全局搜索能力,同时加入自适应跳跃因子以加快算法的收敛时间。仿真实验表明,该算法能有效地获得最优的权矩阵Q和R,使LQR控制效果能够满足结构性能要求。
Based on the inverted pendulum system which is multi-variable , nonlinear and strong coupling , a mathe-matical model of the inverted pendulum is established by utilizing the Newton -Euler method , and then the LQR con-trol is implemented for the model .The weighted matrices Q and R have a direct impact on the dynamic response and control of the single inverted pendulum .During optimization of the matrices Q and R through use of the standard shuf-fled frog-leaping algorithm , the new worst frog jumping strategy can effectively improve the global search ability of the algorithm and the adaptive jump factor can speed up the convergence .The simulation experiment shows that the im-proved shuffled frog-leaping algorithm can effectively obtain the optimal weight matrices Q and R; as a result , the effect of the LQR controller meets the performance requirements of the single inverted pendulum .
出处
《智能系统学报》
CSCD
北大核心
2014年第4期480-484,共5页
CAAI Transactions on Intelligent Systems
基金
国家自然科学基金资助项目(61106019)
关键词
LQR控制器
倒立摆
改进蛙跳算法
优化设计
权矩阵
LQR controller inverted pendulum improved shuffled frog-leaping algorithm optimal design weight matrices