期刊文献+

基于遗传算法的制冷系统动态矩阵控制 被引量:1

Dynamic matrix control for refrigeration system based on genetic algorithm
下载PDF
导出
摘要 根据数据采用最小二乘法辨识得到制冷系统多变量传递函数模型,随后对制冷系统设计动态矩阵控制器,使系统蒸发温度和过热度在满足约束条件下达到控制要求;考虑到DMC控制器的控制时域、预测时域、控制量权重矩阵等参数直接影响系统的稳定性和输出跟踪效果,而一般试凑法选取参数不可避免地存在主观性和随机性,因此给出一种基于遗传算法的DMC参数寻优方法,并应用于制冷系统的控制问题中。最后的仿真试验表明了算法的有效性。 A multivariable transfer function model is obtained through least square method based on the experiment data, and then the DMC controller is established for the refrigeration system, which is used to track the superheat and evaporator temperature with reference without violate the constraints. Considering that the parameters, such as predictive horizon, control horizon and control variation weight matrix, they may affect the response of the system output, a genetic algorithm based parameters optimal tuning method is proposed in this paper. And the simulation result in the last part shows the efficiency of the algorithm.
作者 赵敏 贾晓龙
出处 《信息技术》 2014年第8期18-21,共4页 Information Technology
基金 国家自然科学基金项目(61074016) 新世纪优秀人才支持计划(NCET-11-1051) 优秀青年基金(slg10008)
关键词 制冷系统 多变量 动态矩阵控制 遗传算法 refrigeration system muhivariable dynamic matrix control genetic algorithm
  • 相关文献

参考文献7

  • 1Ammar Bahman, Luis Rosario, Muhammad M Rahman. Analysis of energy saving in a supermarket refrigeration/HVAC system[ J]. Ap- plied Energy, 2012, 98(1 ):11 -21.
  • 2Manfred Morari, Jay H Lee. Model predictive control: past, present and future [ J]. Computers and Chemical Engineering, 1999, 23 ( 1 ) : 667 - 682.
  • 3Denis Leducq, Jacques Guilpart, Gilles Trystram. Nonlinear predic- tive control of a vapour compression cycle[ J]. International Journal of Refrigeration, 2006, 29(2) :761 -772.
  • 4李渊.智能PID控制器优化仿真研究[J].计算机仿真,2012,29(12):180-183. 被引量:11
  • 5诸静.智能预测控制及其应用[M].杭州:浙江大学出版社,2004.
  • 6李兆博,吴爱国,何熠,翟文鹏.制冷系统的改进Smith预估补偿和解耦控制[J].控制理论与应用,2013,30(1):111-117. 被引量:25
  • 7席裕庚.预测控制[J].北京:国防工业出版社,1993.

二级参考文献15

  • 1宋道金.单神经元自适应PID控制器的性能优化设计[J].计算机工程与应用,2007,43(12):199-201. 被引量:17
  • 2CHEN W, CHEN Z J, ZHU R Q, et al. Experimental investiga- tion of a minimum stable superheat control system of an evapora- tor [J]. International Journal of Refrigeration, 2002, 25(8): 1137 - 1142.
  • 3CHEN Y M, DENG S M, XU X G, et al. A study on the operational stability of a refrigeration system having a variable speed compres- sor [J]. International Journal of Refrigeration, 2008, 31(8): 1368 - 1374.
  • 4LIANG N, SHAO S Q, XU H B, et al. Instability of refrigeration sys- tem [J]. Energy Conversion and Management, 2010, 51(11): 2169- 2178.
  • 5HUELLE Z R. The MSS line - a new approach to hunting prob- lem [J]. ASHRAE Journal, 1972, 14(10): 43 - 46.
  • 6刘金琨.先进PID控制及其MATLAB仿真[M]北京:电子工业出版社,2004.
  • 7A C Merzagora. Evaluation and application of a RBF neural network for online single-sweep extraction of SEPs during scoliosis surgery[J].IEEE Transactions on Biomedical Engineering,2007,(07):1300-1308.
  • 8PEI Zhangcai,ZHANG Yanfang,TANG Zhiyong. Model reference adaptive PID control of hydraulic parallel robot based on RBF neural network[A].Sanya,China,2007.1383-1138.
  • 9M Ge,M S Chiu,Q G Wang. Robust PID Controller Design via LMI Approach[J].J of Process Control(S0959-1524),2002,(01):3-13.
  • 10李广军,张晶,曾安平.基于改进RBF神经网络的PID整定[J].长春大学学报,2008,18(6):57-60. 被引量:11

共引文献36

同被引文献42

  • 1吴立群.模糊控制在冷库控制系统中的应用[J].机电工程技术,2006,35(5):74-76. 被引量:2
  • 2刘学浩,孙天臻,邵伟.冷库应加快实现自动化控制及微机的应用[c]//中国制冷学会第十七次团体会员大会暨第五届全国食品冷藏链大会论文集.北京:中国制冷学会、北京制冷学会、中国制冷学会冷藏冻结专业委员会,2004:165-169.
  • 3Yasuda H, Ishibane K, Nakayama S. Evaporator superheat control by an electrically driven expansion valve[J]. Transac tions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2011, 9(2): 147 156.
  • 4Alleyne A, Brennan S, Rasmussen B, et al. Controls and ex- periments: Lessons learned[J]. Control Systems, IEEE,2003,23(5):20-34.
  • 5Zhao Min, Jia Xiao-long, Song Ping. GPC based PID control for superheat control of refrigeration system[J]. Advanced Ma- terials Research, 2014, 846: 148-152.
  • 6Xie Jun, Wang Song-li, Wang Yu-wei, et al. Research on pre- dictive control of evaporator superheat system with time-delay based on DMC intelligent optimization[M]//Practical Applica- tions of Intelligent Systems. Berlin Heidelberg: Springer, 2014: 785-793.
  • 7Precup R-E, Hellendoorn H. A survey on industrial applica- tions of fuzzy control[J]. Computers in Industry, 2011, 62 (3) .. 213-226.
  • 8Silva F V, Filho L C N, Silveira V. Experimental evaluation of fuzzy controllers for the temperature control of the secondary refrigerant in a liquid chiller[J]. Journal of Food Engineering, 2006, 75(3): 349-354.
  • 9Fileti A M F, Antunes A J B, Silva F V, et al. Experimental investigations on fuzzy logic for process control[J]. Control Engineering Practice, 2007, 15(9).. 1 149-1 160.
  • 10Franco I C, Dall'agnol M, Costa T V, et al. A neuro-fuzzy i- dentification of non-linear transient systems Application to a pilot refrigeration plant[J]. International Journal of Refrigera- tion, 2011, 34(8) : 2 063-2 075.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部