期刊文献+

改进人工势场法与模拟退火算法的无人机航路规划 被引量:18

UCAV Path Planning Based on Improved Artificial Potential Field and Simulated Annealing
下载PDF
导出
摘要 针对标准人工势场法应用于无人机航路规划存在的缺陷,建立了改进的人工势场模型:当航路点搜索陷入威胁区时,构造惩罚势函数并使用势场强度代替合力矢量控制进行路径规划,解决由于合力矢量为零引起的局部极小问题;利用模拟退火算法搜索威胁区内势场强度更小的点,使得航路点逃离威胁区,解决传统人工势场法中参数对搜索航路点逃离效果的影响;使用变步长法优化算法的收敛速度。仿真结果说明,该方法能够较好地实现无人机航路规划,且快速易行。 To overcome the shortcomings of the normal artificial potential field method in UCAV path planning,an improved method is proposed. When the flight path point searched into minatory area,the chastisement potential function is composed and potential field intensity is instead of resultant force vector to plan the path,which can solve the local minimum because of that the resultant force vector was zero. To make the path point escape from the minatory area,simulated annealing is used to search the point of less potential field intensity,which can solve that the parameter of the traditional artificial potential field has an influence on searching escape purpose. Considering optimizing the convergence speed of the algorithm,variable step is used to solve the guidance of artificial potential field. The simulation results show that the method could reach the goal of UCAV path planning well, quickly and easily.
出处 《火力与指挥控制》 CSCD 北大核心 2014年第8期70-73,共4页 Fire Control & Command Control
基金 航空科学基金资助项目(2011ZC53026)
关键词 无人作战飞机 航路规划 改进人工势场法 惩罚势函数 模拟退火算法 unmanned combat aerial vehicle path planning improved artificial potential field chastisement potential function simulated annealing
  • 相关文献

参考文献10

二级参考文献39

  • 1郑昌文,严平,丁明跃,苏康.飞行器航迹规划研究现状与趋势[J].宇航学报,2007,28(6):1441-1446. 被引量:94
  • 2阎代维,谷良贤,王兴治.基于Voronoi图的巡航导弹突防路径规划研究[J].弹箭与制导学报,2005,25(2):11-13. 被引量:14
  • 3杜萍,杨春.飞行器航迹规划算法综述[J].飞行力学,2005,23(2):10-14. 被引量:62
  • 4鲁艺,周德云.无人机初始路径规划空间建模方法研究[J].系统仿真学报,2007,19(3):491-493. 被引量:7
  • 5Kabama P T,Meerkov S M,Zeitz F H.Optimal path planning for unmanned combat aerial vehicles to defeat radar tracking[J].Journal of Guidance,Control,and Dynamics,2006(3-4):279-288.
  • 6Dorigo M,Gambardella L M.Ant colony system: A cooperative learning approach to the travelling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 7Stutzle T,Hoos H.Maxmin ant system[J].Future Generation Computer Systems,2000,16(9):889-914.
  • 8BLACKMAN S,POPOLI R.Design and Analysis of Modern Tracking Systems[M].London,Britain:Artech House,1999.
  • 9BEARD RANDAL W,MCLAIN TIMOTHY W.Coordinated target assignment and intercept for unmanned air vehicles[J].IEEE Transactions on Robotics and Automation,2002,18(6):911-922.
  • 10OVERMARS M.A random approach to path planning[R].The Netherlands:Ultrecht University,1992.

共引文献115

同被引文献170

引证文献18

二级引证文献209

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部