摘要
Failure of bridges due to local scour in the vicinity of bridge abutments is a common occurrence. In this study, experiments under two different channel conditions were conducted to assess the impacts of vegetation on channel banks on local scour around a wing-wall abutment with circular edges. Some experiments were conducted in channel with vegetation on channel banks, and other experiments in channel without vegetation on channel bank. The flow velocity and Reynolds stress distributions in scour holes around a wing-wall abutment with circular edges were compared under these 2 different channel conditions. Results reveal that the vegetated-banks can reduce the time for achieving the equilibrium condition from 17 h to 9 h. Also, vegetated-bank channels can result in a significant decrease in the maximum scour depth from 0.084 m(for bare channel bank) to 0.00032 m. Additionally, around the abutment, vegetated-banks play a significant role in diminishing the Reynolds stress(RS) near the bed and removing negative values in RS distribution by weakening unfavorable pressure gradient and down-flow in the upstream of abutment.
Failure of bridges due to local scour in the vicinity of bridge abutments is a common occurrence. In this study, experiments under two different channel conditions were conducted to assess the impacts of vegetation on channel banks on local scour around a wing-wall abutment with circular edges. Some experiments were conducted in channel with vegetation on channel banks, and other experiments in channel without vegetation on channel bank. The flow velocity and Reynolds stress distributions in scour holes around a wing-wall abutment with circular edges were compared under these 2 different channel conditions. Results reveal that the vegetated-banks can reduce the time for achieving the equilibrium condition from 17 h to 9 h. Also, vegetated-bank channels can result in a significant decrease in the maximum scour depth from 0.084 m(for bare channel bank) to 0.00032 m. Additionally, around the abutment, vegetated-banks play a significant role in diminishing the Reynolds stress(RS) near the bed and removing negative values in RS distribution by weakening unfavorable pressure gradient and down-flow in the upstream of abutment.