期刊文献+

基于卷积神经网络的正则化方法 被引量:77

A Novel Regularization Method Based on Convolution Neural Network
下载PDF
导出
摘要 正则化方法是逆问题求解中经常使用的方法.准确的正则化模型在逆问题求解中具有重要作用.对于不同类型的图像和图像的不同区域,正则化方法的能量约束形式应当不同,但传统的L1,L2正则化方法均基于单一先验假设,对所有图像使用同一能量约束形式.针对传统正则化模型中单一先验假设的缺陷,提出了基于卷积神经网络的正则化方法,并将其应用于图像复原问题.该方法的创新之处在于将图像复原看作一个分类问题,利用卷积神经网络对图像子块的特征进行提取和分类,然后针对不同特征区域采用不同的先验形式进行正则化约束,使正则化方法不再局限于单一的先验假设.实验表明基于卷积神经网络的正则化方法的图像复原结果优于传统的单一先验假设模型. Regularization method is widely used in solving the inverse problem.An accurate regularization model plays the most important part in solving the inverse problem.The energy constraints should be different for the different types of images and different parts of the same image,but the traditional L1 and L2 models used in the field of image restoration are both based on a single prior assumption.In this paper,according to the defects of the single priori assumption in traditional regularization model,a novel regularization method based on convolution neural network is proposed and applied to image restoration,therefore,the image restoration can be regarded as a classification issue.In this method,the image is partitioned into several blocks,and the convolution neural network is used to extract and classify the features of sub-block images;then the different forms of the priori regularization constraints are adopted considering the different features of the sub-block images,therefore the regularization method is no longer limited to a single priori assumption.Experiments show that the image restoration results by the regularization method based on convolution neural network are superior to those by the traditional regularization model with a single priori assumption.Therefore the regularization method based on convolution neural network can better restore image,maintain the edge texture characteristic of the image nicely,and has lower computational cost.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期1891-1900,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61273364 61272354 61105119 61300176) 北京市自然科学基金项目(4142043) 中央高校基本科研业务费专项资金项目(2011JBM027 2012JBM027 2013JBM019 2014JBM037) 教育部科技发展中心网络时代科技论文快速共享专项研究资助课题项目(2013113)
关键词 L1范数约束 L2范数约束 正则化方法 卷积神经网络 图像复原 L1 norm constraint L2 norm constraint regularization method convolution neural network image restoration
  • 相关文献

参考文献27

  • 1Ivanov V K. On linear ill-posed problems [J]. Dokl Akad Nauk SSSR, 1962, 14(145): 270-272.
  • 2Phillips D L. A technique for the numerical solution of certain integral equations of the first kind [J]. Journal of the ACM, 1962, 9(1): 84-97.
  • 3Tikhonov A N. On the Solution of Ill-posed Problems and the Method of Regularization [M]. Providence: American Mathematical Society Press, 1963:1035-1038.
  • 4Pace D, Aylward S, NJethammer M. A locally adaptive regularization based on anisotropie diffusion for deformable image registration of sliding organs [J]. IEEE Trans on Medical Imaging, 2013, 32(11): 2114-2126.
  • 5刘鹏,张岩,毛志刚.一种脉冲噪声图像复原算法[J].计算机研究与发展,2006,43(11):1939-1946. 被引量:4
  • 6Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992, 80(1): 259-268.
  • 7Marquina A, Osher S. Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal [J]. SIAM Journal of Scientific Computing, 2000, 2(22): 387-405.
  • 8Levin A, Fergus R, Durand F, et al. Image and depth from a conventional camera with a coded aperture [J]. ACM Trans on Graphics, 2007, 26(3): 701-709.
  • 9Levin A. Blind motion deblurring using image statistics [C] //Proc of the 20th Annual Conf on Neural Information Processing Systems. Cambridge, CM: MIT, 2006:841-848.
  • 10Shah Q, Jia J, Agarwala A. High-quality motion deblurring from a single image [J]. ACM Trans on Graphics, 2008, 27 (3) : 73-83.

二级参考文献22

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 4Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 5LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 6Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 7Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 8Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.
  • 9Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229.
  • 10Y Le Cun, U Muller, J Ben, E Cosatto, B Flepp. Off-road obstacle avoidance through end-to-end learning [M]. Advances in Neural Information Processing Systems. USA: MIT Press, 2005.

共引文献153

同被引文献518

引证文献77

二级引证文献352

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部