Parameterization Modeling of a Gas Turbine Coverplate
Parameterization Modeling of a Gas Turbine Coverplate
摘要
In order to reduce product development cycle time, aerospace companies tend to develop various correlations integrating geometric and performance parameters. This paper covers the development of a parameterization modeling, to be used in the preliminary design phase, for the turbine cover plate of an aero-engine. The parameterization modeling of the turbine cover plate is achieved by using commercial CAD (computer aided design) software processing in batch mode. Two main approaches are presented the outer face and the skeleton models. These models can then be integrated into an iterative process for designing optimal shapes. Both models are capable of reproducing existing cover plate with reasonable accuracy in relatively shorter time periods. However, the skeleton approach provides probably the best results in terms of flexibility and accuracy, but increases programming complexity and requires greater run times.
参考文献10
-
1Roylance, D. 2001. "Finite Element Analysis." MA thesis, Massachusetts Institute of Technology.
-
2Ekman, M., Warg, F., and Nilsson, J. 2005. "An In-Depth Look at Computer Performance Growth." ACM SIGARCH Computer Architecture News 33 (1): 144-7.
-
3Panchenko, V., Patel, K., Moustapha, S. H., Dowhan, M. J., Mah, S., and Hall, D. 2003. "Preliminary Multi-Disciplinary Optimization in Turbomachinery Design." Presented at 2002 NATO-AVT Symposium, Paris, France.
-
4Lytle, J. K. 1999. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles. Washington: National Aeronautics and Space Administration.
-
5Bao, Y., and Ellis, H. 1996. "A New Approach to Software Tool lnteroperability." In Proceedings of the 1996 ACM symposium on Applied Computing, 500-9.
-
6Sobieszczanski-Sobieski, J., and Haftka, R. T. 1997. "Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments." Structural and Multidisciplinary Optimization 14 (1): 1-23.
-
7Lagloire, F., Ouellet, Y., Blondin, B., Moustapha, H., and Gamier, F. 2013. "Single Platform Integration Environment for Turbine Rotor Design & Analysis." Presented at 2013 International Society Air Breathing Engines, Busan, Korea.
-
8Claus, R. W, Evans, A. L, Lylte, J. K, and Nichols, L. D. 1991. "Numerical Propulsion System Simulation." Computing Systems in Engineering 2 (4): 357-64.
-
9Japikse, D., Katz, J., Wisler, D., Guinzburg, A., and Yamada, H. 2002. Developments in Agile Engineering for Turbomachinery. Concepts NREC, White River Junction, USA.
-
10Moustapha, S. H., 2006. Integration of Tools & Processes for Affordable Vehicles, NATO-093 report.
-
1吉桂明.M501联合循环动力装置的发展历程[J].热能动力工程,2016,31(10):8-8.
-
2吉桂明.2005~2009年14种机型燃气轮机退出生产线[J].热能动力工程,2009,24(5):596-596.
-
3吉桂明.320MWJ系列燃气轮机[J].热能动力工程,2009,24(5):576-576.
-
4吉桂明.三菱和日立整合热能业务[J].热能动力工程,2016,31(11):115-115.
-
5吉桂明.可配置的涡轮机控制器[J].热能动力工程,2005,20(4):383-383.
-
6吉桂明.陈氏动力系统高性能的蒸汽/燃料混合技术[J].热能动力工程,2010,25(2):149-149.
-
7GE公司先进的热通道升级[J].燃气轮机技术,2014,27(4):64-64.
-
8吉桂明.GE和MHI合作开发新一代汽轮机装置[J].热能动力工程,2009,24(5):629-629.
-
9吉桂明.怀特盖特电站第一个执行GE数据分析软件[J].热能动力工程,2016,31(1):80-80.
-
10吉桂明.升级改进型LM6000燃气轮机[J].热能动力工程,2009,24(1):23-23.