期刊文献+

Characteristics and origin of abnormally high porosity zones in buried Paleogene clastic reservoirs in the Shengtuo area, Dongying Sag, East China 被引量:18

Characteristics and origin of abnormally high porosity zones in buried Paleogene clastic reservoirs in the Shengtuo area, Dongying Sag, East China
下载PDF
导出
摘要 There are three abnormally high porosity zones developed in buried Paleogene nearshore subaqueous fan and sublacustrine fan clastic reservoirs at 2,800-3,200 m, 3,250-3,700 m and 3,900-4,400 m, respectively, within the Shengtuo area of the Dongying Sag. Here the porosity of reservoirs buried deeper than 4,000 m can still be greater than 20%. Investigation of these three abnormally high porosity(AHP) zones in the 3rd to 4th member of the Paleogene Shahejie Formation in the Shengtuo area was carried out with utilization of core observation, thin section identification, SEM observation, image analysis, core physical property testing and other technical methods. The results show that, the AHP zones in 2,800-3,200 m and 3,250-3,700 m are visible pores primary AHP zones dominated by significant primary intergranular pores(more than 50% of the total porosity), while secondary pores and micropores in authigenic clays may develop in some reservoirs. AHP reservoirs in the AHP zone of 3,900-4,400 m are dominated by micropores in matrix, visible pores are mainly grain dissolution pores but with low absolute content(< 1%), so this zone belongs to the micropores primary AHP zone. The genesis of the three AHP zones was studied to distinguish between porosity enhancement and porosity preservation. Our research shows that, in deeply buried clastic reservoirs in the Shengtuo area, mineral dissolution occurred in a relatively closed diagenetic system with high temperature and high salinity. Reservoir rocks underwent extensive feldspar dissolution, while detrital carbonate grains and carbonate cements show no evidence of extensive dissolution. Although significant feldspar dissolution pores developed, feldspar dissolution enhanced porosity only a little due to the precipitation of almost isovolumetric dissolution products in the nearby primary intergranular pores in forms of authigenic clays and quartz cements. Net enhanced porosity originating from feldspar dissolution is generally less than 0.25%. Thus, the subsurface dissolution has little impact on the mid-deep buried high porosity reservoirs. Reservoirs in braided channels of middle fans in sublacustrine fans and reservoirs in the middle-front of fan bodies of nearshore subaqueous fans provide the basis for the development of AHP zones. The shallow development of fluid overpressure and early hydrocarbon emplacement have effectively retarded compaction and carbonate cementation, so that the high porosity in the superficial layers is preserved in the mid-deep layers. These are the main controlling factors in the development of AHP zones. There are three abnormally high porosity zones developed in buried Paleogene nearshore subaqueous fan and sublacustrine fan clastic'reservoirs at 2,800-3,200 m, 3,250-3,700 m and 3,900- 4,400 m, respectively, within the Shengtuo area of the Dongying Sag. Here the porosity of reservoirs buried deeper than 4,000 m can still be greater than 20%. Investigation of these three abnormally high porosity (AHP) zones in the 3rd to 4th member of the Paleogene Shahejie Formation in the Shengtuo area was carried out with utilization of core observation, thin section identification, SEM observation, image analysis, core physical property testing and other technical methods. The results show that, the AHP zones in 2,800-3,200 m and 3,250-3,700 m are visible pores primary AHP zones dominated by significant primary intergranular pores (more than 50% of the total porosity), while secondary pores and micropores in authigenic clays may develop in some reservoirs. AHP reservoirs in the AHP zone of 3,900-4,400 m are dominated by micropores in matrix, visible pores are mainly grain dissolution pores but with low absolute content (〈 1%), so this zone belongs to the micropores primary AHP zone. The genesis of the three AHP zones was studied to distinguish between porosity enhancement and porosity preservation. Our research shows that, in deeply buried clastic reservoirs in the Shengtuo area, mineral dissolution occurred in a relatively closed diagenetic system with high temperature and high salinity. Reservoir rocks underwent extensive feldspar dissolution, while detrital carbonate grains and carbonate cements show no evidence of extensive dissolution. Although significant feldspar dissolution pores developed, feldspar dissolution enhanced porosity only a little due to the precipitation of almost isovolumetric dissolution products in the nearby primary intergranular pores in forms of authigenic clays and quartz cements. Net enhanced porosity originating from feldspar dissolution is generally less than 0.25%. Thus, the subsurface dissolution has little impact on the mid-deep buried high porosity reservoirs. Reservoirs in braided channels of middle fans in sublacustrine fans and reservoirs in the middle-front of fan bodies of nearshore subaqueous fans provide the basis for the development of AHP zones. The shallow development of fluid overpressure and early hydrocarbon emplacement have effectively retarded compaction and carbonate cementation, so that the high porosity in the superficial layers is preserved in the mid-deep layers. These are the main controlling factors in the development of AHP zones.
机构地区 School of Geosciences
出处 《Petroleum Science》 SCIE CAS CSCD 2014年第3期346-362,共17页 石油科学(英文版)
基金 financially supported by the National Natural Science Foundation of China (No. U1262203, No. 41102058) a National Science and Technology Special Grant (No. 2011ZX05006-003) Foundation for the Author of National Excellent Doctoral Dissertation of China
关键词 碎屑岩储层 胜坨地区 储层特征 东营凹陷 古近纪 异常 中国东部 埋藏 Dongying Sag, Shengmo area, abnormally high porosity zone, pores, genesis
  • 相关文献

参考文献31

二级参考文献411

共引文献860

同被引文献367

引证文献18

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部