期刊文献+

噻吩在Ni(111)表面吸附的密度泛函理论研究 被引量:1

A DFT study of the adsorption of thiophene on Ni(111)surface
原文传递
导出
摘要 采用密度泛函理论方法,运用平板模型对噻吩分子在Ni(111)表面的水平吸附进行了结构优化和能量计算.结果表明,hcpA位的吸附最稳定,以bridgeB吸附最不稳定;噻吩吸附在表面上时,S原子向上翘起,4个C原子与边面Ni原子的作用更紧密,表面原子与噻吩的匹配程度决定了吸附的强度和吸附后S—C键的活泼性;噻吩以bridgeA吸附时分子与表面之间的电子给予与反馈最多,分子最活泼,而hcpA位吸附后噻吩分子轨道上电子的能量变稳定,分子并不活泼. The adsorption of thiophene on the(111)surface of nickel has been optimized and studied using slab mode based on the density functional theory calculations.The results show that the hcpA is the most stable adsorption mode,while the bridgeA adsorption is not stable.S atom of adsorbed thiophene is twisted to vacuum.The strong interaction between the molecule and surface is formed by C atoms,and the activity of C—S bond is correlated with the matching degree between surface and thiophene molecule.The back-donation effect from surface to thiophene molecule is strong in bridgeA adsorption,leading to a strong activity.While the adsorption mode of hcpA presents a stable state of electrons in the molecular orbital.
出处 《分子科学学报》 CAS CSCD 北大核心 2014年第4期318-323,共6页 Journal of Molecular Science
基金 辽宁省高等学校优秀人才支持计划资助项目(LJQ2011034)
关键词 噻吩 吸附 脱硫 密度泛函理论 thiophene adsorption desulfurization DFT
  • 相关文献

参考文献15

  • 1YIDZ, HUANG H, MENGX, et al. [J]. IndEngChemRes, 2013, 52(18):6112-6118.
  • 2SONG H, WAN X, DAI M, et al. [J]. Fuel Process Technol, 2013, 116:52-62.
  • 3KHAN NA, HWU H H, CHENJ G. [J]. J Catal, 2002, 205(2):259-265.
  • 4BLYTH R I R, MITTENDORFER F, HAFNER J, e al. [J]. J Chem Phys, 2001, 114(2):935-942.
  • 5ZHENG X Z, ZHANG Y H, HUANG S P, et al. [J]. Comput Theor Chem, 2012, 979:64-72.
  • 6ZHU H Y, GUOW Y, LI M, et al. [J]. ACSCatal, 2011, 1(11) :1498-1510.
  • 7MITTENDORFER F, HAFNER J. [J]. J Catal, 2003, 214(2):234-241.
  • 8MITTENDORFERF, HAFNERJ. [J]. SurfSci, 2001, 492(1-2) :27-33.
  • 9赵亮,陈燕,高金森,陈玉.噻吩在Ni(100),Cu(100),Co(100)表面吸附的密度泛函研究[J].分子科学学报,2010,26(1):18-22. 被引量:6
  • 10MORINC, EICHLERA, HIRSCHLR, et al. [J] Surf Sci, 2003, 540(2-3):474-490.

二级参考文献17

  • 1翁兴媛,仇永清.噻吩衍生物电子结构的DFT研究[J].分子科学学报,2005,21(2):55-59. 被引量:3
  • 2李大鹏,刘朋军,张连华,杜奇石.平面五元水分子簇的量子化学研究[J].分子科学学报,2007,23(3):203-208. 被引量:4
  • 3SONG C. [ J]. Catal Today, 2003,86(1/2/3/4) : 211-263.
  • 4BRUNETA S, MEYA D, PEROT G, et al. [J]. Appl Catal A,2005,278(2) : 143-172.
  • 5SHAN H H,LI C Y,YANG C H,et al. [J].Catal Today,2002,77(1/2) : 117-126.
  • 6TAWARA K, NISHIMURA T, IWANAMI H. [ J ]. Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute ), 2000,43 : 114-120.
  • 7BEZEVERKHYY I, RYZHIKOV A, GADACZ G, et al. [J]. Catal Today,2008,130( 1 ) : 199-205.
  • 8SAINTIGNY X, VAN SANTEN R A, CLEMENDOT S, et al. [ J ]. J Catal, 1999,183 ( 1 ) : 107-118.
  • 9ROZANSKA X, VAN SANTEN R A, HUTSCHKA F. [ J ]. J Catal, 2001 ( 1 ), 200: 79-90.
  • 10ROZANSKA X, VAN SANTEN R A, HUTSCHKA F, et al. [ J ]. J Catal, 2003,215 ( 1 ) : 20-29.

共引文献5

同被引文献18

  • 1YI D Z,HUANG H,MENG X,et al.[J].Ind Eng Chem Res,2013,52(18):6112-6118.
  • 2SONG H,WAN X,DAI M,et al.[J].Fuel Process Technol,2013,116:52-62.
  • 3KHAN N A,HWU H H,CHEN J G.[J].J Catal,2002,205(2):259-65.
  • 4BLYTH R I R,MITTENDORFER F,HAFNER J,et al.[J].J Chem Phys,2001,114(2):935-942.
  • 5ZHENG X Z,ZHANG Y H,HUANG S P,et al.[J].Comput Theor Chem,2012,979:64-72.
  • 6ZHU H Y,GUO W Y,LI M,et al.[J].ACS Catal,2011,1(11):1498-1510.
  • 7MITTENDORFER F,HAFNER J.[J].J Catal,2003,214(2):234-241.
  • 8MITTENDORFER F,HAFNER J.[J].Surf Sci,2001,492(1/2):27-33.
  • 9MORIN C,EICHLER A,HIRSCHL R,et al.[J].Surf Sci,2003,540(2/3):474-490.
  • 10ORITA H,ITOH N.[J].Surf Sci,2004,550(1/3):177-184.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部