期刊文献+

基于改进遗传算法的QoS移动网格任务调度 被引量:1

Task scheduling algorithm based on improved genetic algorithm for QoS in mobile grid
下载PDF
导出
摘要 移动网格环境具有高度的动态性,任意时刻都可能发生资源的变化,任务调度因此变得复杂,提出了一种面向服务质量(QoS)的移动网格任务调度策略.建立资源和任务模型,定义任务优先级,将任务分成若干子集,子集内调度采用改进遗传算法,选取时延和跨度为QoS指标,编码和遗传操作上体现资源对任务QoS的匹配调度,使最优解尽力满足任务QoS;同一资源上分配的任务,按优先级顺序执行.仿真结果表明,调度算法可以较好地满足用户的QoS,调度跨度也较优. Mobile grid is a highly dynamic resource environment. Thusly,possible changes in resource anytime under such an environment will result in a complex task scheduling. In the paper, the authors put forward a QoS - oriented mobile grid task scheduling strategy. The strategy helps construct the resource and task models. After determining the priority of tasks, it further divides the tasks into several subsets. Besides, the scheduling of different subsets is based upon improving genetic algorithm,with time delay and makespan being the QoS in- dexes. Further, the matching and scheduling of QoS tasks will be performed in coding and genetic operation so that the optimal solution can satisfy QoS tasks. Finally,tasks on the same resource allocation can be performed according to the priority list. In conclusion, the simulation results indicate that scheduling algorithm can better satisfy users'QoS, and system performance makespan can also be improved.
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2014年第5期635-639,共5页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(61340014) 河南省科技厅重点科技攻关项目(122102210116)
关键词 移动网格 任务调度 QOS 最优跨度 遗传算法 mobile grid task scheduling Quality of Service (QoS) makespan genetic algorithm
  • 相关文献

参考文献9

  • 1杜丽娟,鞠宏军.移动网格环境下可靠任务调度研究[J].计算机工程与应用,2012,48(20):142-145. 被引量:2
  • 2TOMAS, LUIS, OSTBERG, et al. An adaptable in- advance and fairshare meta-scheduling architecture to improve grid qos [ C ]// Proceedings 2011 12th IEEE! ACM International Conference on Grid Computing, Grid. [s. n. ] ,2011 : 220-221.
  • 3蒲汛,何为,卢显良.基于改进遗传算法的多QoS约束网格任务调度[J].电子科技大学学报,2010,39(S1):54-56. 被引量:4
  • 4FREUND R F. CHEERILY M, ALMBRUSIUS S, et al. Scheduling resources in multi-user, heterogeneous, computing environment with SmarNet [ C ]//Pruc the 7th IEEE Heterugeneous Computing Workshop ( HCW" 98). Florida, USA:[s.n.],1998:184-199.
  • 5杜丽娟,余镇危.基于OverlayNetwork的移动网格及其关键技术研究[D].北京:中国矿业大学,2012.
  • 6ANG,TAN FONG, LING. Teck Chaw. Adaptive QoS scheduling in a service-oriented grid environment [ J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2012.20( 3 ) : 413-424.
  • 7ZHANG LI, QU PAN. Mobile Grid Resources Cluste- ring Algorithm Based on Fuzzy Theory[ C]//2012 In- ternational Conference on Electrical Information and Mechatronics. [ s. n. ] ,2012.
  • 8FANGPENG DONG, SELIM G AKL. Scheduling algo- rithms for grid computing: state of the art and open problems [ D ]. Kingston : Queen S University,2006.
  • 9秦涛,刘朝斌.基于最早完成时间的网格任务调度算法[D].大连:大连海事大学,2010.

二级参考文献18

  • 1郭权,王希诚.网格环境下具有可靠性的任务调度策略[J].南京理工大学学报,2006,30(5):592-598. 被引量:6
  • 2玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 3Ju Hong-Jtm, Du Li-juan.Middleware framework of mobile grid[C]//Proceedings of Annual Conference of China In- stitute of Communications,2009.
  • 4Vaithiya S S,Bhanu S M S.Scheduling tasks in mobile grid environment using mobility based resource predic- tion[C]//lst International Conference on Parallel Distribut- ed and Grid Computing (PDGC2010), Solan, 2010: 89-94.
  • 5Hwang S, Kesselman C.Grid workflow: a flexible failure handling framework for the grid[C]//Proc of 12th IEEE International Symposium on High Performance Distributed Computing (HPDC- 12) , Los Alamitos, CA, USA.Seattle, Washington, USA: IEEE Computer Society Press, 2003 : 126-137.
  • 6Qin x, Luo W, Bellam K.Reliability-driven scheduling of periodic tasks in heterogeneous real-time systems[C]// Pro~ of the 4th IEEE International Symposium on Em- bedded Computing, Ontario, Canada, 2007.
  • 7Abdulal W, Ramachandram S.Reliability-aware genetic scheduling algorithm in grid environment[C]//20ll Inter- national Conference on Communication Systems and Network Technologies, Hyderabad, India, 2011 : 673-677.
  • 8Carrington L, Snavely A, Wolter N, et al.A performanceprediction framework for scientific applications[J].Fu- ture Generation Computer Systems, 2006,22 (3) : 336-346.
  • 9Nurmi D, Brevik J, Wolski R.Modeling machine avail- ability in enterprise and wide-area distributed computing environments[C]//Proceedings of EUROPAR,2005.
  • 10Basumatary H, Sreevalsan E, Sasi K K.Weibull parameter estimation-a comparison of different methods[J].Wind Engineering, 2005,29 (3) : 309-316.

共引文献4

同被引文献14

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部