期刊文献+

基于距离像时频非负稀疏编码的SAR目标识别 被引量:1

SAR ATR based on HRRP time-frequency non-negative sparse coding
下载PDF
导出
摘要 提出了一种基于目标高分辨距离像时频域非负稀疏编码的合成孔径雷达(synthetic aperture radar,SAR)目标识别方法。首先,将目标的SAR复图像转换为高分辨距离像。然后,采用自适应高斯基表示方法计算每个距离像的非负时频矩阵。其次,对训练目标所有距离像的时频矩阵采用非负稀疏编码方法学习时频字典。在目标识别中,通过将每个距离像的时频矩阵投影到低维的时频字典上来提取特征矢量。最后,在提取特征矢量的基础上,通过支撑向量机目标识别决策实现目标识别。采用美国"运动和静止目标获取与识别计划"公开发布的SAR图像数据库进行算法验证实验。实验结果说明了提出方法的有效性。 A new approach to classify synthetic aperture radar (SAR) targets is presented based on high range resolution profile (HRRP) time-frequency non-negative sparse coding (NNSC). Firstly, complex SAR target images are converted into HRRPs. And the non-negative time frequency matrix for each profile is oh tained by using adaptive Gaussian representation (AGR). Secondly, NNSC is applied to learn target time-fre- quency dictionary. Feature vectors are constructed by projecting each HRR profile time frequency matrix to the time-frequency dictionary. Finally, the target classification decision is found with the support vector machine. To demonstrate the performance of the proposed approach, experiments are performed with SAR database re leased publicly by moving and stationary target acquisition and recognition (MSTAR). The experiment results support the effectiveness of the proposed technique for SAR target classification.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第10期1934-1941,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61301224) 中央高校基本科研业务费专项资金(CDJZR12160014 CDJRC11160003) 重庆市自然科学基金(cstcjjA40018 cstc2012jjA40001)资助课题
关键词 合成孔径雷达 自动目标识别 距离像 稀疏编码 synthetic aperture radar (SAR) automatic target recognition (ATR) high resolution rangeprofile sparse coding
  • 相关文献

参考文献24

  • 1高贵,匡纲要,李德仁.高分辨率SAR图像分割及目标特征提取[J].宇航学报,2006,27(2):238-244. 被引量:18
  • 2Zhang H, Nasrabadi N M, Zhang Y, et al. Multi-view automatic target recognition using joint sparse representation [J]. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (3):2481 -2497.
  • 3Zhao Q, Principe J C. Support vector machines for SAR auto matie target recognition[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(2), 643 - 654.
  • 4Zhao Q, Principe J C,Brennan V L, et al. Synthetic aperture ra- dar automatic target recognition with three strategies of learning and representation[J]. Optical Engineering, 2000 (39) : 1230 - 1237.
  • 5Anagnostopouios G C. SVM-hased target recognition from syn thetie aperture radar images using target region outline descrip tors[J]. Nonlinear Analysis: Theory, Methods &: Applica tions, 2009, 71: eg934-e2939.
  • 6Papson S, Narayanan R M. Classification via the shadow region in SAR imagery[J]. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48(4) : 969 - 980.
  • 7Potter L C, Moses R L. Attributed scattering centers for SAR ATR[J]. IEEE Trans. on Image Processing, 1997, 6(5) : 79 - 91.
  • 8Zhang X Z, Qin J H, Li G ], SAR target classification using Bayes- ian compressive sensing with scattering centers features[J]. Progress in Electromagnetics Research, 2013, 136 : 385 - 407.
  • 9Liao X J, Runkle P, Carin L. Identification of ground targets from sequential high-range-resolution radar signatures [J]. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38 (2) :1230 - 1242.
  • 10Wong S. High range resolution profiles as motion-invariant fea- tures for moving ground targets identification in SAR based au tomatic target recognition[J]. IEEE Trans. on Aerospace and Electronic Systems, 2009, 45(2): 1017-1039.

二级参考文献31

  • 1高贵,匡纲要,李德仁.高分辨率SAR图像分割及目标特征提取[J].宇航学报,2006,27(2):238-244. 被引量:18
  • 2Bhanu B,Dudgeon D E,Zelnio E G,et al.Introduction to the special issue on automatic target detection and recognition[J].IEEE Trans on Image Processing,1997,16(1):1-6
  • 3Ross T D.SAR ATR:so what's the problem? An MSTAR perspective[J].SPIE,1999,3721:662-672
  • 4Charles H,Fosgate,Hamid Krim,et al.Multiscale segmentation and anomaly enhancement of SAR imagery[J].IEEE Trans on Image Processing,1997,6(1):7-20,January 1997
  • 5Choi H,Richard G,Baraniuk.Multiscale image segmentation using wavelet-domain hidden markov models[J].IEEE Trans on Image Processing,2001,10(9):1309-1321
  • 6Cook R,McConnell I.MUM(Merge Using Moments) segmentation for SAR images[J].SPIE,1994,2316:92-103
  • 7Robert A,Weisenseel W,Clem K,et al.Markov random field segmentation methods for SAR target chips[J].SPIE 1999,3721:102 -108
  • 8Robert A,Weisenseel W,Clem K,et al.MRF-Based Algorithms for Segmentation of SAR Images[A].The Proceeding of the 1998 International Conference on Image Processing[C].Paris:IEEE,1998,770-774
  • 9Steven H,Guillermo S,Allen T.Knowledge-based segmentation of SAR data with learned priors[J].IEEE Trans Image Processing,2000,9(2):215-219
  • 10Koenderink J.The structure of images[J].Biological Cybernetics,1984,50:363-370

共引文献18

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部