摘要
针对属性权重和决策矩阵的属性值均为梯形模糊数的模糊多属性决策问题,提出了一种基于集对分析的决策方法.方法具有如下特点:通过借鉴集对分析理论和论域三划分的思想,把梯形模糊数属性值转化成联系数的形式,能有效处理决策过程中的不确定因素;对于权重向量和决策矩阵中的梯形模糊数采取不同的处理方法;用联系数决策理论的概念来刻画备选方案与正、负理想方案组成集对的同一对立程度;基于可能势的联系数排序能够准确反映联系数间的同一对立程度,方法直观,概念明确,易于实际操作.实例计算表明,方法是求解模糊多属性决策问题的一种有效工具.
A set pair analysis based method is proposed for multiple attribute decision making problems in which both the attribute weights and the attribute values of decision matrix are trapezoidal numbers. By referring to the thought that the universe is divided into three parts in the set pair analysis theory, the trapezoidal evaluations are transformed into connection numbers, so this method can effectively deal with the uncertain factors in decision making process. Connection number decision matrix can obtain the identity-contrary degree of the set pairs structured by alternative schemes and ideal scheme. The ranking method based on relatively certainty probability power can accurately depict the identity-contrary degree of the connection numbers. Different methods to deal with the trapezoidal weights vector and the evaluation vector of every alternative in decision matrix are given. The method is intuitionist, explicit, so it brings convenience in practical application. Simulation results show that the proposed method is an effective tool to solve the fuzzy multiple attribute decision making problems.
出处
《数学的实践与认识》
CSCD
北大核心
2014年第16期180-185,共6页
Mathematics in Practice and Theory
基金
黑龙江省教育厅科学技术项目(12541893)
国家自然科学基金(1271041)
中央高校科研业务费专项资金项目(swjtu11ZT29)
关键词
集对分析
梯形模糊数
多属性决策
联系数
理想方案
set pair analysis
trapezoidal fuzzy number
multi-attribute decision making connection number
ideal scheme