摘要
Non-uniform algebraic-trigonometric B-splines shares most of the properties as those of the usual polynomial B-splines. But they are not orthogonai. We construct an orthogonal basis for the n-order(n ≥ 3) algebraic-trigonometric spline space in order to resolve the theo- retical problem that there is not an explicit orthogonai basis in the space by now. Motivated by the Legendre polynomials, we present a novel approach to define a set of auxiliary functions, which have simple and explicit expressions. Then the proposed orthogonal splines are given as the derivatives of these auxiliary functions.
Non-uniform algebraic-trigonometric B-splines shares most of the properties as those of the usual polynomial B-splines. But they are not orthogonai. We construct an orthogonal basis for the n-order(n ≥ 3) algebraic-trigonometric spline space in order to resolve the theo- retical problem that there is not an explicit orthogonai basis in the space by now. Motivated by the Legendre polynomials, we present a novel approach to define a set of auxiliary functions, which have simple and explicit expressions. Then the proposed orthogonal splines are given as the derivatives of these auxiliary functions.
基金
Supported by the National Natural Science Foundation of China(60933008,61272300 and 11226327)
the Science&Technology Program of Shanghai Maritime University(20120099)