期刊文献+

基于ZYNQ的稠密光流法软硬件协同处理 被引量:4

Dense optical flow software-hardware co-processing based on ZYNQ
下载PDF
导出
摘要 光流法是计算机视觉中一个基础性的算法,可广泛应用于运动检测、运动估计、视频分析等领域。但光流法最大的问题是计算复杂、速度慢,限制了它在实际系统尤其是嵌入式系统中的应用。利用最新的高层综合(HLS)语言与传统的硬件描述语言相结合,在Xilinx的FPGA异构系统芯片(即ZYNQ)平台上,以软硬件协同的工作方式,设计了基于Horn-Schunck稠密光流法的硬件加速器。实验证明,对于640×480大小的图片,软硬件协同处理比纯软件处理的计算性能提高了34倍,执行时间从24.40 s降低到0.71 s。 Techniques of optical flow computation are widely used in many video/image based applications such as motion detection, motion estimation and video analysis etc. However, high-quality optical flow algorithms are computationally intensive. Slow computation limits the applicability of optical flow computation in real-world applications, especially in embedded systems. In this paper, an implementation of Horn-Schunck optical flow algorithm based on Xilinx ZYNQ is presented. The High-Level Synthesis(HLS)language together with traditional hardware description language is used to describe optical flow accelerator in the software-hardware co-processing mode. Taking resolution 640 × 480 as instance, the result shows that FPGA-accelerated HS outperforms 34x than the pure software vision on ZYNQ. The execution time is decreased from 24.40 s to 0.71 s.
出处 《计算机工程与应用》 CSCD 2014年第18期44-49,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.60703106 No.61170121 No.61202312)
关键词 光流加速器 ZYNQ 高层综合语言 软硬件协同处理 可编程器件 optical flow accelerator ZYNQ high-level synthesis language software-hardware co-processing Field-Programmable Gate Array (FPGA)
  • 相关文献

参考文献15

  • 1Horn B K P, Schunck B G.Determining optical flow[J]. Artificial Intelligence, 1981,17 ( 1/3 ) : 185-203.
  • 2Barron J L,Fleet D J, Beauchemin S S.Performance of optical flow techniques[J].International Journal of Com- puter Vision, 1994,12( 1 ) :43-47.
  • 3Baker S, Scharstein D, Lewis J P, et al.A database and evaluation methodology for optical flow[J].International Journal of Computer Vision, 2011,92( 1 ) : 1-31.
  • 4Lucas B, Kanade T.An iterative image registration tech- nique with an application in stereo vision[C]//7th Inter- national Joint Conference on Artificial Intelligence, Van- couver,Brithish Columbia, 1981:674-679.
  • 5Bruhn A, Weickert J.Towards ultimate motion estimation: combining highest accuracy with real-time performance[C]// 10th IEEE International Conference on Computer Vision, 2005 : 749-755.
  • 6Bruhn A.Variational optical flow computation[D].Saar- brucken : Saarland University, 2006.
  • 7Mizukami Y, Tadamura K.Optical flow computation on compute unified device architecture[C]//14th International Conference on Image Analysis and Processing(IAIAP),Modena, Italy, 2007.
  • 8Diaz J,Ros E,Pelayo F,et al.FPGA-based real-time opti- cal-flow system[J].IEEE Transactions on Circuits and Sys- tems for Video Technology,2006,16(2) :274-279.
  • 9Martin J L,Zuloaga A,Cuadrado C, et al.Hardware im- plementation of optical flow constraint equation using FPGAs[J].Computer Vision and Image Understanding, 2005.98 : 462-490.
  • 10Rustam A,Hamid N H,Hussin F A.FPGA-based hard- ware implementation of optical flow constraint equation of Horn and Schunck[C]//4th International Conference on Intelligent and Advanced Sytems( ICIAS ), 2012: 790-794.

二级参考文献66

共引文献16

同被引文献19

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部