期刊文献+

基于特征融合的人体行为识别 被引量:18

Human action recognition using multi-feature fusion
原文传递
导出
摘要 为克服单个行为表达方法有效性上的不足,提出了一种基于多特征融合和支持向量机(SVM)的人体行为识别(HAR)方法。首先,利用背景差分提取运动显著区域;然后提取运动显著区域的剪影直方图和光流直方图,并采取一定的融合策略,构建融合特征结合SVM识别人体行为。实验以广泛使用的公开数据集Weizmann为研究对象,正确识别率达到99.8%以上。结果表明,提出的特征融合及识别方法能有效地对人体行为进行识别;而且,由于规避了比较耗时的序列匹配操作,减少了计算量。 Human action recognition (HAR) has become and pattern recognition due to a wide range of promising one of the most active topics in computer vision applications. In order to overcome the deficiency of single representation method,a new recognition algorithm of human action based on multi-feature fusion and support vector machine (SVM) is presented in this paper. The proposed algorithm consists of three essential cascade modules. First, the human silhouette is obtained by separating the salient regions and the background based on background subtraction. Then,the multi-feature fusion is constructed by using two types of available features, the histogram of the silhouette and the optic flow. The human activi- ty recognition can commonly be viewed as a multiclass classification problem. Finally, the multiple features are sent to the SVM for recognizing the human activity. The experimental results show that the proposed method can achieve the correct recognition rate above 99.8% for the Weizmann benchmark data set. Inter-related analyses conclude that the proposed algorithm is effective and promising. The recognition performance of the SVM classifiers and some other mainstream classification techniques is also compared,which further verifies the effectiveness of the proposed algorithm.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第9期1818-1823,共6页 Journal of Optoelectronics·Laser
基金 教育部重点科研项目(108174) 教育部博士点基金(20130191110021)资助项目
关键词 行为识别(HAR) 信息融合 支持向量机(SVM) 核方法 human action recognition (HAR) information fusion support vector machine (SVM) kernel method
  • 相关文献

参考文献16

  • 1赵海勇,刘志镜,张浩.基于轮廓特征的人体行为识别[J].光电子.激光,2010,21(10):1547-1551. 被引量:22
  • 2高赞,张桦,蔡安妮.动作识别算法的评估策略探讨[J].光电子.激光,2012,23(6):1166-1172. 被引量:10
  • 3Feng Z,Yang B, Li Y, et al. Real-time oriented behavior- driven 3D freehand tracking for direct interaction[J]. Pat- tern Recognition, 2013,46(2) : 590-608.
  • 4Poppe R. A survey on vision-based human action recogni- tion[J]. Image and vision computing, 20]0,28 (6) : 976- 990.
  • 5Gorelick L,Blank M,Shechtman E,et al. Actions as spac- e-time shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29( 12 ) : 2247-2253.
  • 6Niebles J C,Wang H, Fei-Fei L. Unsupervised learning of human action categories using spatial-temporal words [J]. International Journal of Computer Vision, 2008,79 (3) :299-318.
  • 7Derpanis K G, Sizintsev M, Cannons K J, et al. Action spotting and recognition based on a spatiotemporal orien- tation analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(3) :527-540.
  • 8Zhou H, Wang L, Suter D. Human action recognition by feature-reduced Gaussian process classification[J]. Pat- tern Recognition Letters,2009,30(12):1059-1066,.
  • 9Babu R V, Ramakrishnan K R. Recognition of human ac-tions using motion history information extracted from the compressed video [J]. Image and Vision Computing, 2004,22(8) :597-607.
  • 10Yogameena B,Lakshmi S V, Archana M, et al. Human be havior classification using multi-class relevance vectoI machine[J]. Journal of Computer Science, 2010,6 (9) : 1021-1026.

二级参考文献17

  • 1王典,程咏梅,杨涛,潘泉,赵春晖.基于混合高斯模型的运动阴影抑制算法[J].计算机应用,2006,26(5):1021-1023. 被引量:20
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Aggarwal J. K, Cai Q. Human motion analysis:A review[J]. Computer Vision and Image Understanding, 1999, 73 ( 3 ) : 428- 440.
  • 4Gavrila D. M. The visual analysis of human movement :A survey [J]. Computer Vision and Image Understanding, 1999,73 ( 1 ) : 82-98.
  • 5Bashir F I, Khokhar A A, Schonfeld D. Object trajectory based activity classification and recognition using hidden Markov models[J]. IEEE Trans on Image Processing, 2007,16 (7) : 1912-1919.
  • 6ZHU Guang-yu, XU Chang-sheng. Action recognition in broadcast tennis video[A]. Proc of the 18th International Conference on Pattern Recognition[C]. N J: IEEE,2006. 251-254.
  • 7Chert H S,Chen H T,Chen Y W,et al. Human action recognition using star skeleton [A]. Proc of the 4th ACM International Workshop on Video Surveillance and Sensor Networks[C]. NY:AOM,2006. 179-]82.
  • 8HOU Ye, GUO Bao-long Human motion detection by using graph cuts[J]. Journal of Optoelectronics · Laser, 2007, 18 (6) :725-728.
  • 9Salmon J P, Debled-Rennesson I, Wendling L. A new method to detect arcs and segments from curvature profiles[A]. Proc of the 18th International Conference on Pattern Recognition (ICPR'06) [C]. IEEE,2006. 387-390.
  • 10Fujiyoshi H,Lipton A. Real-time human motion analysis by image skeletonization[A]. In, Proceedings of IEEE Workshop on Applications of Computer Vision[C]. NJ:IEEE, 1998. 15-21.

共引文献30

同被引文献172

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2戴树贵,陈文兰.一个求解k短路径实用算法[J].计算机工程与应用,2005,41(36):63-65. 被引量:20
  • 3Schuldt C, Laptev I. Recognizing Human Actions: Alocal SVM Approach[C]//Proc. of the 17th International Conference on Pattern Rec- ognition. Cambridge, UK : IEEE Computer Society, 2004: 32.
  • 4Laptev I, Marszalek M, Schmid C, et al. Learning realistic human actions from movies[C]. In CVPIL. USA: IEEE, 2008:1-8.
  • 5Xue Z, Ming D, Song W, et al. Infrared gait recognition based on wavelet transform and support vector machine [J]. Pattern Recognition,2010,43(8) :2904-2910.
  • 6Zhu Y,Guo G D. A Study on visible to infrared action rec- ognition[J]. IEEE Signal Processing Letters, 2013, 20 (9) : 897-900.
  • 7Poppe R. A survey on vision-based human action recogni- tion[J]. Image and Vision Computing, 2010,28 (6) : 976- 990.
  • 8Li J F,Gong W G. Application of thermal infrared imagery in human action recognition[J]. Nanotechnology and.Com- puter Engineering, 2010,121-122 : 368-3,72.
  • 9Laptev I ,Marszalek M ,Schmid C,et al. Learning realis- tic human actions from movies[A]. Proc. of In CVPR 2008 [C]. Anchorage, AK, USA, 2008,1-8.
  • 10Wang H, Klaeser A, Schmid C, et al. Dense trajectories and motion boundary descriptors for action recognition [J]. International Journal Of Computer Vision, 2013,1103 (I) :60-79.

引证文献18

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部