期刊文献+

基于支持向量机的转子系统早期故障诊断方法 被引量:2

Method of Early Fault Diagnosis for Rotor System Based on Support Vector Machine
下载PDF
导出
摘要 转子系统中的振动信号包含了很多状态信息,运行过程中故障特征的有效提取和识别对于转子系统早期故障诊断非常关键。针对转子系统故障信息的复杂性,提出将小波包分析和支持向量机相结合的转子系统早期故障诊断方法。该方法首先利用改进的小波包方法提取早期故障特征;然后将提取的特征向量输入基于支持向量机的分类器进行故障识别。实验分析结果表明,该方法在小样本情况下,能够有效识别转子系统的早期故障,具有很好的分类精度,而且能够实现旋转机械的多故障诊断。 The vibration signals of rotor in operation tion, and extraction and identification of fault fault diagnosis signals consist of plenty of information about its running condiin the process of speed change are necessary for the early of rotor system. Due to the complexity of fault diagnosis for rotor, a new method for early fault diagnosis on rotor system is proposed which combines the wavelet packet and support vector machine. Firstly, the improved wavelet packet is used to extract early fault feature signals. Then, the early fault feature vector is inputted to the classifier based on the support vector machine. The results show that the proposed method can identify the early fault of rotor system in small sample, classification precision is satisfactory, and the multi-faults diagnosis of rotor system is realized.
出处 《测控技术》 CSCD 北大核心 2014年第9期18-21,25,共5页 Measurement & Control Technology
基金 中国博士后科学基金资助项目(2014M552504)
关键词 故障诊断 小波包 支持向量机 粒子群算法 fault diagnosis wavelet packet support vector machine particle swarm algorithm
  • 相关文献

参考文献13

  • 1Vapnik V. The Nature of Statistical Learning Theory[ M ]. 2nd ed. New York : Springer-Verlag,2000.
  • 2朱启兵,李志华,陈立平.基于卷积型小波包变换的信号降噪研究[J].农业机械学报,2007,38(12):160-164. 被引量:3
  • 3Hu Q, He Z J, Zhang Z S, et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble [ J ]. Mechanical Systems and Signal Process- ing, 2007,21 ( 2 ) :688 - 705.
  • 4Liu F, Ruan X E. Wavelet-based diffusion approaches for sig- nal denoising [ J ]. Signal Processing, 2007,87 ( 5 ) : 1138 - 1146.
  • 5To A C, Moore J R, Glaser S D. Wavelet denoising tech- niques with applications to experimental geophysical data [J]. Signal Processing,2009,89(2) : 144 - 160.
  • 6李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 7Platt J C, Cristianini N, Shawe-Taylor J. Large Margin DAGs for Multi-Class Classification [ M ]. MIT Press, 2000 : 547 - 553.
  • 8Har-Peled S, Roth D, Zimak D. Constraint classification: a new approach to multiclass classification [ C]//Proceedings of 13th International Conference on Algorithmic Learning Theory. 2002 : 365 - 397.
  • 9Poll R, Kennedy J, Blackwell T. Particle swarm optimization [ J]. Swarm Intelligence ,2007,1 ( 1 ) :33 - 57.
  • 10Gazi V, Passino K M. Swarm Stability and Optimization [ M ]. Springer,2011 : 251 - 279.

二级参考文献25

共引文献121

同被引文献14

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部