期刊文献+

一种LDA和聚类融合的SVM多类分类方法 被引量:9

SVM multi-class classification based on LDA and clustering
下载PDF
导出
摘要 改进传统的基于二叉树结构的支持向量机多类分类方法。将无监督聚类引入到算法中,利用无监督聚类剔除大量的非支持向量样本,同时对于无监督聚类在异类样本相近时出现的性能下降问题,引入线性判别分析使得同类样本聚集,异类样本分散,确保聚类精度。线性判别分析和无监督聚类结合能够显著地缩减训练样本。该方法能够在保持分类准确率的情况下有效地提高SVM的分类速度。 To improve traditional multi-class SVM method based on binary-tree.Using unsupervised clustering to extract training set,meanwhile,using linear discriminant analysis to solve the performance degradation of clustering when samples in different classes are similar,makes the samples in the same classes are gathered together and the samples in different classes are scattered,to ensure the accuracy of clustering.LDA and cluster can reduce training sample efficiently.The approach improves the speed of classification effectively while maintaining classification accuracy.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期559-562,共4页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(61070176)
关键词 支持向量机 线性判别分析 模糊C均值聚类 多类分类 二叉树 support vector machine linear discriminant analysis fuzzy C-means clustering multi-class classification binary-tree
  • 相关文献

参考文献12

二级参考文献51

  • 1伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3赵晖,荣莉莉.基于模糊核聚类的SVM多类分类方法[J].系统工程与电子技术,2006,28(5):770-774. 被引量:6
  • 4陈增照,杨扬,何秀玲,喻莹,董才林.基于核聚类的SVM多类分类方法[J].计算机应用,2007,27(1):47-49. 被引量:11
  • 5Wang Xiaodan,Shi Zhaohui,Wu Chongming,et aLAn improved algorithm for decision tree based svm[C]. Proceedings of the World Congress on Intelligent Control and Automation, 2006: 4234-4238.
  • 6Liu Song,Yi Haoran,Chia Liang-Tien, et al.Adaptive hierarchical multi class svm classifier for texture based image classification [C]. IEEE International Conference on Multimedia and Expo, 2005:1191-1194.
  • 7VAPNIK VN,张长工.统计学习理论[M].第1版.北京:电子工业出版社,2004.
  • 8Knerr S, Personnaz L, Dreyfus G.Single-layer learning revisited: A stepwise procedure for building and training a neural network[C].In:J Fogelman ed. Neurocomputing: Algorithms, Architectures and Applications,New York: Springer-Verlag, 1990.
  • 9Bottou L,Cortes C,Denker J et al. Comparison of classifier methods:A case study in handwritten digit recognition[C].In:Proc of the International Conference on Pattern Recognition,1994:77~87.
  • 10Platt J,Cristianini N,Shawe-Taylor J.Large margin DAG's for multiclass classification[C].In:Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 2000; 1 (12): 547~553.

共引文献1219

同被引文献124

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部