期刊文献+

复杂动态场景下运动目标跟踪的卡尔曼粒子滤波方法 被引量:2

Kalman Particle Filter Algorithm for Moving Target Tracking Based on the Complex Dynamic Scene
原文传递
导出
摘要 针对复杂动态场景中粒子滤波算法跟踪目标时稳定性不高且易受背景噪声影响的特点,提出了改进的卡尔曼粒子滤波(KPF)目标跟踪算法。利用卡尔曼嵌入粒子滤波的方法对粒子滤波预测的状态值进行二次预测,并且利用二次采样技术增强粒子的丰富度,从而在一定程度上消除背景噪声的影响。同时为了满足卡尔曼滤波对线性运动的要求以及消除背景快速变化对跟踪精度的影响,采用灰度投影算法计算背景偏移从而进行运动补偿。实验结果表明,改进的卡尔曼粒子滤波跟踪算法在复杂动态场景中可以有效地跟踪运动目标,证明提出的KPF算法精度高、稳健性强、实时性好。 Aiming at the unstable characteristics of the particle filter algorithm which is easily affected by background noise in complex dynamic scene while it is tracking target, an improved Kalman particle filter (KPF) target-tracking algorithm is put forward. The method of using embedded Kalman particle filter is used to predict the predicted status value of particle filter secondarily. And the secondary sampling technique is used to enhance particle richness, and thus eliminates the influence of background noise to a certain extent. Besides in order to meet the requirements of Kalman on linear motion and to eliminate the effect of rapid background change on tracking accuracy, the gray projection algorithm is promoted to calculate the background migration for motion compensation. The experiment results show that the improved Kalman particle filter algorithm can effectively track the moving object in the complex dynamic scene, which proves that the propposed KPF algorithm has high precision, strong robustness and good real-time performance.
出处 《激光与光电子学进展》 CSCD 北大核心 2014年第9期89-96,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61271332) 总装预先研究基金(40405050303) 江苏省"六大人才高峰"支持计划(2010-DZXX-022) 江苏省基础研究计划青年基金(BK20130769)
关键词 图像处理 目标跟踪 灰度投影算法 卡尔曼算法 粒子滤波 稳健性 image processing target-tracking gray projection algorithm Kalman filter algorithm particlefilter robustness
  • 相关文献

参考文献11

二级参考文献84

共引文献100

同被引文献28

  • 1万磊,黄蜀玲,张铁栋,等.基于可见光图像的智能水下机器人管道跟踪系统.中国激光,2014,41(s1):s109006.
  • 2Ross D A, Lim J, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
  • 3Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
  • 4Zhang K H, Zhang L, Yang M H. Real-time object tracking via online discriminative feature selection[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4664-4677.
  • 5Zhang K H, Zhang L, Yang M H, Fast compressive tracking[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
  • 6Black M J, Jepson A D. Eigentracking: Robust Matching and Tracking of Articulated Objects using a View-Based Representation[M]. Berlin: Springer, 1996.
  • 7Qing C M, Zhao S M, Xu X M. The incremental PCA tracking with negative samples[C]. 2014 IEEE International Conference on Consumer Electronics, 2014: 1-4.
  • 8Fu K S, Mui J K. A survey on image segmentation[J]. Pattern Recognition, 1981, 13(1): 3-16.
  • 9Li S Z. Markov Random Field Modeling in Computer Vision[M]. Berlin: Springer, 2012.
  • 10Glauber R J. Time-dependent statistics of the Ising model[J]. J Math Phys, 1963, 4(2): 294-307.

引证文献2

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部