期刊文献+

基于分块2DPCA的人脸识别方法 被引量:6

Face recognition algorithm based on modular 2DPCA
下载PDF
导出
摘要 为进一步提高分块二维主成分分析(2DPCA)算法在人脸识别的识别率,提出一种人脸识别算法。将训练样本人脸矩阵按光照等相似条件进行分块并进行类内平均归一化;采用2DPCA算法构造特征空间,将分块矩阵在特征空间中进行投影得到训练样本识别特征,利用支持向量机(SVM)在分类上的优势,对训练样本识别特征和经过归一化分块2DPCA的测试样本识别特征进行分类,对人脸图像进行识别。选取ORL人脸数据库的图片进行实验,将该算法与传统2DPCA、2DPCA+SVM等算法进行比较,验证了该算法的性能优于其它算法。 To improve the face recognition rate of the algorithm of the modular two-dimensional principal component analysis (2DPCA), a new face recognition algorithm was proposed. In the algorithm, the training images were divided into sub-images according to the illumination and they were normalized in each class. Through the algorithm of the 2DPCA, the feature space was obtained. The training images- recognition features were gotten by projecting the modular matrix to the feature space. Last- ly, support vector machine (SVM) was made full use of to classify the training images' recognition features and the test images' recognition features which were obtained by using the algorithm of the modular 2DPCA. Then the test images were recognized. Compared the proposed algorithm with the algorithm of the 2DPCA, the 2DPCA+SVM etc. in the ORL face database, the results demonstrate that the performance of the proposed algorithm is better than that of the other algorithms.
作者 邓亚平 王敏
出处 《计算机工程与设计》 CSCD 北大核心 2014年第9期3229-3233,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61370180)
关键词 分块 二维主成分分析 支持向量机 类内平均 人脸识别 modular 2DPCA SVM within-class average face face recognition
  • 相关文献

参考文献11

  • 1Youyi J,Xiao L.A method for face recognition based on wavelet neural network[C]//Second WRI Global Congress on Intelligent Systems.IEEE,2010:133-136.
  • 2Liao S,Chung A C S.A novel Markov random field based deformable model for face recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.1EEE,2010:2675-2682.
  • 3Assadi A,Behrad A.A new method for human face recognition using texture and depth information[C]//10th Symposium on Neural Network Applications in Electrical Engineering.IEEE,2010:201-205.
  • 4Li X,Song A.Fuzzy MSD based feature extraction method for face recognition[J].Neurocomputing,2013,122:266-271.
  • 5Li S,Gong D,Yuan Y.Face recognition using Weber local descriptors[J].Neurocomputing,2013,122:272-283.
  • 6Luan X,Fang B,Liu L,et al.Face recognition with contiguous occlusion using linear regression and level set method[J].Neurocomputing,2013,122:386-397.
  • 7Turk M,Pentland A.Face recognition using eigenfaces[C]//Proc IEEE Conf on Comp Vision and Patt Recog,1991:586-591.
  • 8Yang J,Zhang D,Frangi A F,et al.Two-dimensional PCA:A new approach to appearance-based face representation and recognition[J].IEEE Trans Pattern Analysis and Machine Intelligence (S0162 8828),2004,26 (1):131-137.
  • 9李晓东,费树岷.一种改进的模块2DPCA人脸识别新方法[J].系统仿真学报,2009,21(15):4672-4675. 被引量:11
  • 10Cortes C,Vapnik VN.Support-vector networks[J].Machine Learning,1995,20 (3):273-297.

二级参考文献4

共引文献11

同被引文献61

  • 1李国,穆国旺,睢佰龙.基于生物启发特征与PCA-LDA的人脸识别方法[J].河北工业大学学报,2013,42(5):80-83. 被引量:2
  • 2陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 3刘永俊,陈才扣.基于差空间的最大散度差鉴别分析及人脸识别[J].计算机应用,2006,26(10):2460-2462. 被引量:13
  • 4陈伏兵,杨静宇.分块PCA及其在人脸识别中的应用[J].计算机工程与设计,2007,28(8):1889-1892. 被引量:26
  • 5Xiao Luan,Bin Fang.Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion[J].Pattern Recognition,2014,47(2):495-508.
  • 6Li Hongmei,Zhou Dongming.Face recognition using KPCA and KFDA[J].Applied Mechanics and Materials,2013,380(10):3850-3853.
  • 7Vijayakumar Kadappa,Atul Negi.Global modular principal component analysis[J].Signal Processing,2014,105:381-388.
  • 8Javed A.Face recognition based on principal componentanalysis[J].International Journal of Image,Graphics andSignal Processing(IJIGSP),2013,5(2).
  • 9Yang J,Zhang D.Two-dimensional PCA:a new approachto appearance-based face representation and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
  • 10Kong H.Generalized 2D principal component analysis forface image representation and recognition[J].Neural Network,2005,18:585-594.

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部