期刊文献+

高通量视频内容分析技术 被引量:2

High-Throughput Content-Based Video Analysis Technologies
下载PDF
导出
摘要 大数据环境下,如何对高并发的视频数据进行实时地分析处理,是一个亟待解决的科学问题。本文介绍了面向互联网视频内容监管的高通量视频内容分析技术,着重对其中的四个主要关键技术(基于众核的视频高速解码和视频特征提取、基于分布式系统的高维索引和语义识别)的研究现状和发展趋势进行了综述和总结,并介绍了作者在这四个主要关键技术研究的最新成果,主要包括面向众核处理器的并行环路滤波、高鲁棒性和高并行度的局部特征提取与挖掘、分布式高维索引、面向大数据的集成学习方法,以充分发挥多粒度并行硬件平台的高并行计算能力,为互联网视频内容监管、视频搜索等重要应用提供关键技术支撑。 Under the environment of Big Data, how to analyze the content of high concurrent video data is a scientific problem which requires urgent solution. In this paper, we introduce the technologies about high-throughput content-based video analysis for content-based monitoring of web images and videos. We give an in-tensive survey on the state of the developments and trends in four key technologies:efficient video decoding and feature extraction with mass-core processors, and high-dimensional indexing and semantic recognition on distrib-uted systems. Furthermore, we introduce our latest research works on these technologies:parallel deblocking filter on mass-core processor, extraction and mining of highly robust and parallel local features, high-dimensional dis-tributed indexing, ensemble learning for large scale data, so as to take full advantages of high performances of multi-grain parallel computing platforms for the purpose of providing key technologies for the important applica-tions such as Internet video monitoring and search, etc.
出处 《工程研究(跨学科视野中的工程)》 CSCD 2014年第3期294-306,共13页 JOURNAL OF ENGINEERING STUDIES
基金 国家自然科学基金项目(61173054 61271428 61303159) 国家863项目(2014AA015202) 国家科技支撑计划项目(2012BAH06B01 2012BAH39B02)
关键词 大数据 高通量 视频内容分析 大规模并行处理 big data high-throughput content-based video analysis massive parallel processing
  • 相关文献

参考文献58

  • 1李国杰.973计划信息领域战略调研材料之三:大数据(Big Data)科学问题研究[R/OL].(2012-07-21)[2013-02-23].http://www.ict.ac.cn/liguojiewenxuan/wzlj/lgjxsbg/201302/P020130223675673612379.pdf.
  • 2Vanne J, Viitanen M, Hamalainen T D, et al. Comparative Rate-Distortion-Complexity Analysis of HEVC and AVC Video Codecs [J]. IEEE Trans. Circuits Syst. Video Technol., 2012, 22(12): 1885-1898.
  • 3Leupers R, Eeckhout L. Virtual Manycore Platforms: Moving Towards 100+ Processor Cores [C]// 2011 Design, Automation & Test in Europe Conference & Exhibition (DATE2011). IEEE, 2011: 1-6.
  • 4Sullivan G J, Ohm J, Han W J, et al. Overview of the High Efficiency Video Coding (HEVC) Standard [J]. IEEE Trans. Circuits Syst. Video Technol., 2012, 22(12): 1649-1668.
  • 5Madan N, Buyuktosunoglu A, Bose P, et al. A Case for Guarded Power Gating in Multi-Core Processors [C]// The 17th IEEE International Symposium on High Performance Computer Architecture (HPCA-17). IEEE, 2011 :291-300.
  • 6Yan C G, Zhang Y D, Xu J Z, et al. Efficient Parallel Framework for HEVC Motion Estimation on Many-core Processors [C]// IEEE Transactions on Circuits and Systems for Video Technology. IEEE, 2014, PP(99): 1.
  • 7Cheung N M, Fan X P, Au 0 C, et al. Video Coding on Multi-Core Graphics Processors [J]. Proc. IEEE Signal Processing Magazine, 2010, 27(2): 79-89.
  • 8Chi C C, Juurlink B. A QHD-Capable Parallel H.264 Decoder [C]// Proceedings of the International Conference on Supercomputing (ICS2011). Venice, Italy: ICS, 2011: 317-326.
  • 9Schwalb M, Ewerth R, Freisleben B. Fast Motion Estimation on Graphics Hardware for H.264 Video Encoding [J]. IEEE. Trans on Multimedia, 2009,11(1): 1-10.
  • 10Wang S W, Yang S S, Chen H M, et al. A Multi-Core Architecture Based Parallel Framework for H.264/AVC Deblocking Filters [J]. J. Signal Process. Syst., 2009, 57(2): 195-211.

同被引文献5

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部