摘要
为了进一步提高硅微陀螺仪的零偏稳定性,使其满足更高精度应用场合的需求,研究了硅微陀螺仪零偏稳定性优化技术。以典型Z轴硅微陀螺仪为例,对影响其零偏稳定性的主要因素:机械耦合误差、电路耦合误差、机械热噪声、接口电路噪声进行了完整分析,并从抑制零偏温度漂移及输出噪声两个角度提出了改善硅微陀螺仪零偏稳定性的设计原则。基于上述原则,优化设计了硅微陀螺仪的机械结构及接口电路。最后对所设计的硅微陀螺仪进行了零偏稳定性测试,以验证所提出优化设计原则的有效性。实验结果表明,4个测试组的硅微陀螺仪零偏输出均无明显漂移,且零偏稳定性在6(°)/h左右,达到了中等战术级水平。
To improve the bias stability of a silicon microgyroscope for more precise applications, the optimization of bias stability for the silicon microgyroscope was explored. By taking a typical Z-axis silicon microgyroscope for an example, zero-rate output errors of a typical Z-axis silicon microgyroscope caused by mechanical coupling, electrical coupling, mechanical thermal noise and interface circuit noise were analyzed. On the basis of decreasing the drift and noise of zero-rate outputs, the design principle to improve the bias stability of the silicon microgyroscope was proposed. The mechanical structure and interface circuits for the silicon microgyroscope were designed. To verify the availability of the design principle, the bias stability of the silicon microgyroscope was tested. Experimental results indicate that the zero-rate outputs of four tested silicon microgyroscopes are no obvious drifts, and their bias stabilities are at the level of 6 (°)/h. It suggests that the proposed silicon microgyroscope has reached a medium tactical precision grade.
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2014年第9期2381-2388,共8页
Optics and Precision Engineering
基金
武器装备预研基金资助项目(No.9140A09011011BQ02)
国家863高技术研究发展计划资助项目
关键词
硅微陀螺仪
零偏稳定性
机械耦合误差
前置接口放大器
silicon microgyroscope
bias stability
mechanical coupling error
interface preamplifier