期刊文献+

热解火焰法制备碳纳米管:氧炔焰温度与取样高度的影响

Effect of Oxy-acetylene Flame Temperature and Sampling Height on the Carbon Nanotubes Synthesized by Flame Pyrolysis Method
下载PDF
导出
摘要 以甲烷为碳源、Fe/Mo/Al2O3为载体催化剂,应用热解火焰法制备碳纳米管。研究了氧炔焰温度和取样高度对碳纳米管合成的影响。取样高度为80 mm时,以外围氧炔焰温度940℃、1010℃、1100℃进行了3组实验。结果表明:随氧炔焰温度升高,碳纳米管产量增加且管径明显变细。氧炔焰温度为1100℃时最适宜碳纳米管的生长。当氧炔焰温度为1100℃时,取样高度为80 mm时产量相对于取样高度60 mm时更大。但取样高度为60 mm时合成的碳纳米管更加笔直。不同取样高度下均制得了双壁碳纳米管。 Carbon nanotubes were synthesized by pyrolysis flame method,using methane as carbon,Fe /Mo /Al2O3 as catalyst. The effect of oxy-acetylene flame temperature and sampling height on the carbon nanotubes was studied. The results show that when sampling height is 80 mm,with an oxygen-acetylene flame temperature increasing,the yield increased and the morphology of the carbon nanotubes changed greatly. 1100 ℃ is the most suitable flame temperature for synthesis of carbon nanotubes. The sampling height was studied with the oxy-acetylene flame temperature of 1100 ℃. It is found that the yield with sample height 80 mm is greater than sampling height 60 mm. However,when the sampling height is 60 mm,carbon nanotubes synthesis is more straight. In the experiment double-walled carbon nanotubes were synthesized with different sampling height.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2014年第8期2011-2015,共5页 Journal of Synthetic Crystals
基金 中央高校基本科研业务费专项资金资助(13MS07)
关键词 碳纳米管 甲烷 热解火焰 氧炔焰温度 取样高度 carbon nanotube methane flame pyrolysis oxy-acetylene flame temperature sampling height
  • 相关文献

参考文献13

  • 1Bemholc J, Roland C, Yakobson B I. Nanotubes[J]. Current Opinion in Solid State and Materials Science. 1997,2(6) :706-715.
  • 2Ebbesen T W, Ajayan P M. Large-scale Synthesis of Carbon Nanotubes[ J]. Nature, 1992,258 ( 6383 ) :220-222.
  • 3Cassell A M, Raymakers J A, Kong J, et al. Large Scale CVD Synthesis of Single-walled Carbon Nanotubes. The Journal of Physical Chemistry B,1999,103(31) :6484-6492.
  • 4Thess A, Lee R, Nikolaev P, et al. Crystalline Ropes of Metallic Carbon Nanotubes[ J ]. Science-AAAS-Weekly Paper Edition,1996,273(5274) :483-487.
  • 5Vander Wal R L, Ticich T M, Curtis V E. Diffusion Flame Synthesis of Single-walled Carbon Nanotubes[ J]. Chemical Physics Letters ,2000,323 (3) :217-223.
  • 6孙保民,丁兆勇,许秉浩.五羰基铁催化热解合成碳纳米管[J].人工晶体学报,2010,39(4):936-940. 被引量:5
  • 7郭永红,袁媛,孙保民,王阳,贾斌.催化剂的组成对热解火焰法合成碳纳米管的影响[J].人工晶体学报,2012,41(5):1308-1312. 被引量:1
  • 8孙保民,袁媛,郭永红,贾斌,王阳.催化剂焙烧温度对热解火焰法合成碳纳米管的影响[J].人工晶体学报,2012,41(4):900-904. 被引量:3
  • 9Li Y D, Chen J L, Oin Y N. Simultaneous Production of Hydrogen and Carbon Nanotubes from Decomposition of Methane Over Nickel Based Catalyst [ J ]. Energy & Fuels,2000,14 : 1188-1194.
  • 10李颖,李轩科,刘朗.裂解温度对碳纳米管制备的影响[J].新型炭材料,2002,17(4):53-56. 被引量:9

二级参考文献36

  • 1孙保民,刘远超,李磊,丁兆勇,赵惠富,祝欣慰.利用基板法在V型热解火焰中合成碳纳米管的实验研究[J].人工晶体学报,2009,38(S1):303-307. 被引量:5
  • 2郭连权,马常祥,王帅,李辛.单壁碳纳米管储氢行为的模拟计算研究[J].人工晶体学报,2004,33(3):371-375. 被引量:4
  • 3张军波,黄碧纯,叶代启.碳纳米管在环境保护中的应用研究进展[J].环境科学与技术,2007,30(3):112-114. 被引量:10
  • 4Iijima S. Helical microtubes of graphic carbon[J]. Nature, 1991, 354: 56.
  • 5Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature, 1992, 358: 220.
  • 6Colbet P T, Zhang J, mcclure S M, et al. Growth and sintering of fullerene nanotubes[J]. Science, 1994, 266: 12 18.
  • 7Ivanov V, Nagy J B, Lambin Ph, et al. The study of carbon nanotubes produced by catalytic method[J]. Chem Phys Lett, 1994, 223: 329.
  • 8Ivanov V, Fonseca A, Nagy J B, et al. Catalyst production and purification of nanotubes having fullerene-scale diameters[J]. C arbon, 1995, 33(12): 1727-1738.
  • 9Hernadi K, Fonseca A, Nagy J B, et al. Fe-catalyzed carbon nanotube formation[J]. Carbon, 1996, 34(10): 1249- 1257.
  • 10Rahul Sen, Govindaraj A, Rao C N R. Carbon nanotubes by the metal locene route[J]. Chem Phys Lett, 1997, 267: 276.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部