期刊文献+

A Verifiable Multi-Secret Sharing Scheme Based on Hermite Interpolation

A Verifiable Multi-Secret Sharing Scheme Based on Hermite Interpolation
下载PDF
导出
摘要 A threshold scheme, which is introduced by Shamir in 1979, is very famous as a secret sharing scheme. We can consider that this scheme is based on Lagrange's interpolation formula. A secret sharing scheme has one key. On the other hand, a multi-secret sharing scheme has more than one key, that is, a multi-secret sharing scheme has p (〉_ 2) keys. Dealer distribute shares of keys among n participants. Gathering t (〈 n) participants, keys can be reconstructed. Yang et al. (2004) gave a scheme of a (t, n) multi-secret sharing based on Lagrange's interpolation. Zhao et al. (2007) gave a scheme of a (t, n) verifiable multi-secret sharing based on Lagrange's interpolation. Recently, Adachi and Okazaki give a scheme of a (t, n) multi-secret sharing based on Hermite interpolation, in the case ofp 〈 t. In this paper, we give a scheme ofa (t, n) verifiable multi-secret sharing based on Hermite interpolation.
出处 《Journal of Mathematics and System Science》 2014年第9期587-592,共6页 数学和系统科学(英文版)
关键词 Verifiable secret sharing scheme Multi-secret sharing scheme Hermite interpolation 埃尔米特插值 多秘密共享 插值格式 拉格朗日插值公式 秘密共享方案 阈值方案 参与者 经销商
  • 相关文献

参考文献19

  • 1T. Adachi and C. Okazaki: A multi-secret sharing scheme with many keys based on Hermite interpolation. submitted.
  • 2G. R. Blakley: Safeguarding cryptographic keys. AFIPS Conference Proceedings, vol.48 (1979), pp. 313-317.
  • 3Liqun Chen, Dieter Gollmann, Chris J. Mitchell, Peter Wild: Secret sharing with reusable polynomials. Proceeding of the Second Australian Conference on Information Security and Privacy-A CISP '97, (1997), pp. 183-193.
  • 4Hung-Yu Chien, Jinne-Ke Jan, Yuh-Min Tseng: A practical (t,n) Multi-Secret Sharing Scheme. IEICE transactions on fundamentals of electronics, communications and computer sciences, vol. E83-A, no.12 (2000), pp. 2762-2765.
  • 5Benny Chor, Shaft Goldwasser, Silvio Micali, Baruch Awerbuch: Verifiable secret sharing and achieving simultaneity in the presence of faults. SFCS'85 Proceedings of the 26th Annual Symposium on Foundations of Computer Science, ( 1985), pp. 251-260.
  • 6Massoud Hadian Dehkordi, Samaneh Mashhadi: An efficient threshold verifiable multi-secret sharing. Computer Standards and Interfaces, vol.30, no.3 (2008), pp. 187-190.
  • 7Massoud Hadian Dehkordi, Samaneh Mashhadi: New efficient and practical verifiable multi-secret sharing schemes. Information Sciences, vol. 178, no.9 (2008), pp. 2262-2274.
  • 8Paul Feldman : A practical scheme for non-interactive verifiable secret sharing. SFCS'87 Proceedings of 28th 1EEE Symposium on Foundations of Computer Science, (1987), pp. 427-437.
  • 9L. Ham, Comment: Multistage secret sharing based on one-way function. Electron. Lett., vol.31, no.4 (1995), p. 262.
  • 10L. Ham : Efficient sharing (broadcasting) of multiple secrets. Proc. IEE-Comput. Digit. Tech., vol.142, no.3 (1995), pp. 237-240.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部