期刊文献+

基于自适应非极大值抑制的SIFT改进算法 被引量:8

Improved SIFT algorithm based on adaptive non-maximun suppression
下载PDF
导出
摘要 针对图像配准中尺度不变特征变换(SIFT)算法解算速率慢的问题,提出了基于非极大值抑制的改进算法。该算法扩大了极值检测区域半径,对SIFT关键点进行筛选,实现了关键点的优化分布。还提出一种自适应确定检测区域半径的方法,来更精确地控制关键点的数目和分布。仿真试验结果表明,该算法能在一系列不同的图像变换下表现出稳定的配准结果,解算速率较标准SIFT算法提升显著。 SIFT algorithm is inefficient in the applications wich have high rate of data updateing. This paper presents a non-maximum suppression algorithm to accelerate SIFT algorithm. This method extends the SIFT detector, so achieves well distributed key points. The results we obtained in tests demonstrate that the algorithm achieves high data renew rate and stable matching performance.
出处 《电子设计工程》 2014年第18期180-182,共3页 Electronic Design Engineering
关键词 图像配准 SIFT 非极大值抑制 局部极值 特征检测 image registration SIFT non-maxmum suppression local maximum feature detection
  • 相关文献

参考文献8

  • 1Lowe. D. G. Distinctive image features from scale-invariantkeypoints[J]. International Journal of Computer Vision ,2004,60(2):91-110.
  • 2D.GLowe. Object recognition from local scale -invariant features[Q5IEEE International Conference on. Computer Vision. TheProceedings of the Seventh, 1999:1150-1157.
  • 3Hu Ming -Kuei Visual pattern recognition by momentinvariants [J]. Information Theory,IRE Transactions on,1962,8(2):179-187.
  • 4K. Mikolajczyk,C. Schmid. A performance evaluation of localdescriptors[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence,2005,27(10):1615-1630.
  • 5Ke Yan R. Sukthankar. PCA- SIFT:a more distinctiverepresentation for local image descriptors[C]//ComputerVision And Pattern Recognition. Proceedings of the 2004IEEE Computer Society Conference on, 2004:506-513.
  • 6刘立,彭复员,赵坤,万亚平.采用简化SIFT算法实现快速图像匹配[J].红外与激光工程,2008,37(1):181-184. 被引量:92
  • 7Chris Harris, Mike Stephens. A combined comer and edgedetector[C]//Alvey vision conference, 1988:50.
  • 8Song R,Szymanski J. Well - distributed SIFT features [J].Electronics Letters,2009,45(6):308-310.

二级参考文献10

  • 1王兆仲,周付根,刘志芳,杨建峰.一种高精度的图像匹配算法[J].红外与激光工程,2006,35(6):751-755. 被引量:9
  • 2MORAVEC H.Rover visual obstacle avoidance[C]//International Joint Conference on Artificial Intelligence,1981:785-790.
  • 3HARRIS C,STEPHENS M.Acombined corner and edge detector[C]//Fourth Alvey Vision Conference,1988:147-151.
  • 4SCHMID C,MOHR R.Local grayvalue invariants for image retrieval[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(5):530-534.
  • 5LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110
  • 6LOWE D G.Object recognition from local scale-invariant features[C]//International Conference on Computer Vision,1999:1150-1157
  • 7STEPHEN S,LOWE D G,LITTLE J J.Vision-based global localization and mapping for mobile robots[J].IEEE Transactions on Robotics,2005,21(3):364-375.
  • 8HELMER S,LOWE D G.Object recognition with many local features[C]//Workshop on Generative Model Based Vision 2004(GMBV,2004.
  • 9LINDEBERG T.Scale-space theory:A basic tool for analyzing structures at different scales[J].Journal of Applied Statistics,1994,21:224-270.
  • 10MORTENSEN E N,REESE L J,BARRETT W A..Computer vision and pattern recognition[J].IEEE Computer Society Conference,2005,1:184-190.

共引文献91

同被引文献99

引证文献8

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部