期刊文献+

基于并行演化计算的记忆非线性功率放大器数字预失真研究 被引量:2

Research of digital predistortion in nonlinear power amplifier with memory based on parallel evolutionary computation
下载PDF
导出
摘要 自适应数字预失真是克服高功率放大器非线性失真最有前途的一项技术。为提高预失真的效率和效果,引入并行计算平台下的演化计算技术,提出了基于PSO算法预训练神经网络的方法,给出了算法软件实现的基本流程。在所述基础上,采用带抽头延时的双入双出三层前向神经网络结构,根据非直接学习结构和反向传播算法实现自适应,可同时补偿放大器的记忆失真和非线性失真的预失真技术。仿真实验表明,通过与无PSO预训练算法的相比,基于PSO预训练的神经网络训练算法有更好的性能。 Adaptive digital predistortion is the most promising technique to overcome the nonlinearity of High Power Amplifier (HPA). In order to improve the efficiency and effectiveness of the predistortion, the evo- lutionary computation techniques of the parallel computing platform are introduced, the method of training neu- ral network in advance based on the PSO algorithm is proposed, and the basic process of the algorithm is given. Based on the above, a three-layer forward neural network predistorter with two inputs and two outputs is pro- posed for HPA with memory. The predistorter is realized using indirect learning architecture associated with the Backpropagation algorithm . This technique allows us to correct for general nonlinearities and memory effects simultaneously. Simulation results show that the new approach is more efficient than the conventional BP algo- rithm, without training in advance based on PSO.
作者 刘钊 胡力
出处 《计算机工程与科学》 CSCD 北大核心 2014年第9期1637-1643,共7页 Computer Engineering & Science
基金 国家自然科学基金资助项目(51174151 61100133)
关键词 功率放大器 记忆非线性 预失真 PSO 神经网络 并行计算 power amplifier memory nonlinear predistortion PSO neural network parallel computing
  • 相关文献

参考文献5

二级参考文献68

  • 1[1]M. Jobansson and T. Mattsson. Transmitter linearization using Cartesian feedback for linear TDMA modulation. in Proc IEEE VTC91.1991; (5):439~444.
  • 2[2]L. Sundstrom, M. Faulkner,and M. Johansson. Quantization analysis and design of a digital predistortion linearizer for RF power amplifiers. IEEE Trans.Veh. Technol, 1996; 45 (11): 707~719
  • 3[3]M.G.Di Benedetto and P. Mandarini. An application of MMSE predistortion to OFDM systems. IEEE Trans Commun. 1996;43(11): 1417 ~1422
  • 4[4]T. Nojima and T. Konno, Cuber predistortion linearizer for relay equipment in 800-MHz band land mobile telephone system. IEEE Trans. Veh.Technol. 1985;VT-34(11): 169~177
  • 5[5]N.M. Blachman. Bandpass nonlinearities.IEEEnnicini,P. Magni,and F. Og Trans Inform Theory,1964; IT- 10(4):162~164
  • 6[6]S.P. Stapleton and F.C. Costescu, An adaptive predistorter for a power amplifier based on adjacent channel emissions. IEEE Trans Commun. 1992; 41:49 ~56
  • 7J Kim,K Konstantinou.Digital predistortion of wideband signals based on power amplifier model with memory[J].ELECTRONICS LETTERS,2001 ;37(23): 1417~1418
  • 8M Ibnkahla et al.Neural network modeling and identification of nonlinear channels with memory: algorithms, applications, and analytic models[J].IEEE Trans Signal Processing, 1998 ;46:1208~1220
  • 9M Ibnkahla. Neural network predistortion technique for digital satellite communications[C].In:Proc IEEE ICASSP'00,2000;4:3506~3509
  • 10F Langlet,H Abdulkader et al.Comarison of neural network adaptive predistorsion techniques for satellite down links[C].In:Proc IJCNN'01,2001:709~714

共引文献407

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部