期刊文献+

水下运载器非奇异快速终端滑模控制 被引量:4

Nonsingular fast terminal sliding mode control for underwater vehicles
下载PDF
导出
摘要 针对传统基于线性滑模面的滑模控制方法收敛速度慢、易于颤振的难题,提出一种新型多变量非奇异快速终端滑模控制方法.利用Lyapunov稳定性理论对该方法进行理论分析,结果表明:系统位置跟踪误差和速度跟踪误差将在有限时间内收敛到小球域内,并且小于相同参数条件下传统基于线性滑模面的滑模控制方法.以正在开发的北极星号遥控水下运载器的四自由度控制为研究对象,将该方法和基于指数趋近律的传统滑模控制方法进行仿真对比,结果表明:当存在较强未知外干扰和较大参数不确定性以及测量噪声时,该方法相对传统滑模控制方法可以获得更快的动态响应速度、更高的稳态控制精度和更平滑的控制输入. To resolve the problems in the traditional linear hyperplane-based sliding mode control (SMC) method such as low convergence speed and easy to chattering, a novel multivariable nonsingular fast termi- nal sliding mode control (NFTSMC) method was proposed. Theoretical analysis using Lyapunov stability theory was addressed for the proposed method. The result shows that the position and velocity tracking er- rors will converge to small ball fields in finite time, and they are smaller than the ones obtained by the tra- ditional linear hyperplane-based SMC method under the same control parameters. For the 4-DOF (degrees of freedom) control of POLARIS remotely operated vehicle (ROV) which is being built up, comparative simulations were performed using the new proposed method and a traditional exponential reaching law based SMC method respectively. The results prove that the new proposed method can achieve faster dy- namic response speed, higher steady control precision and more smooth control inputs compared with the traditional SMC method in the presence of large unknown external disturbances, big parameter uncertain- ties and measurement noise.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第9期1541-1551,共11页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(51221004)
关键词 水下运载器 动力定位 滑模控制 非奇异快速终端滑模控制 多变量控制 underwater vehicles dynamic positioning sliding mode control nonsingular fast terminal slid-ing mode control multivariable control
  • 相关文献

参考文献19

  • 1朱康武,顾临怡.作业型遥控水下运载器的多变量backstepping鲁棒控制[J].控制理论与应用,2011,28(10):1441-1446. 被引量:11
  • 2YOERGER D R, NEWMAN J B, SLOTINE J. Supervi- sory control system for the JASON ROV [J]. IEEE Journal of Oceanic Engineering, 1986, 11(3) : 392 - 400.
  • 3YOERGER D R, SLOTINE J. Robust trajectory control of underwater vehicles [J]. IEEE Journal of Oceanic En- gineering, 1985, 10(4) : 462 - 470.
  • 4BESSA W M, DUTRA M S, KREUZER E. Depth con- trol of remotely operated underwater vehicles using an a- daptive fuzzy sliding mode controller [J]. Robotics and Autonomous Systems, 2008, 56(8): 670-677.
  • 5HOANG N Q, KREUZER E. A robust adaptive sliding mode controller for remotely operated vehicles [J]. Technische Mechanik, 2008, 28(3/4): 185- 193.
  • 6BAGHERI A, MOGHADDAM J J. Simulation and tracking control based on neural-network strategy and sliding-mode control for underwater remotely operated vehicle [J]. Neurocomputing, 2009, 72 (7) : 1934 - 1950.
  • 7YU Shuang-he, YU Xing-huo, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipula- tors with terminal sliding mode [J]. Automatica, 2005, 41(11) : 1957 - 1964.
  • 8NEKOUKAR V, ERFANIAN A. Adaptive fuzzy termi- nal sliding mode control for a class of MIMO uncertain nonlinear systems [J]. Fuzzy Sets and Systems, 2011, 179(1) : 34-49.
  • 9FAN Li-ping, YU Ya-zhou. Dynamic adaptive terminal sliding mode control for DC-DC converter [J]. Electron- ics and Signal Processing, 2011,97(1) : 503 - 507.
  • 10YANG Liang, YANG Jian-ying. Nonsingular fast ter- minal sliding-mode control for nonlinear dynamical sys- tems [J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879.

二级参考文献19

  • 1Venkataraman S T, Gulati S. Terminal sliding modes: A new approach to nonlinear control synthesis[A]. Proceedings of the International Conference on Advanced Robotics[C]. Piscataway, NJ, USA: IEEE, 1991. 443-448.
  • 2Man Z H, Yu X H. Terminal sliding mode control of MIMO linear systems[A]. Proceedings of the IEEE Conference on Decision and Control[C]. Piscataway, NJ, USA: IEEE, 1996. 4619-4624.
  • 3Yu X H, Man Z H, Wu Y Q. Terminal sliding modes with fast transient performance[A]. Proceedings of the IEEE Conference on Decision and Control[C]. Piscataway, NJ, USA: IEEE, 1997. 962-963.
  • 4Yu S H, Yu X H, Man Z H. Robust global terminal sliding mode control of SISO nonlinear uncertain systems[A]. Proceedings of the IEEE Conference on Decision and Control[C]. Piscataway, NJ, USA: IEEE, 2000. 2198-2203.
  • 5Feng Y, Yu X H, Man Z H. Non-singular terminal sliding mode control and its application for robot manipulators[A]. Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Piscataway, NJ, USA: IEEE, 2001. 545-548.
  • 6Abramowitz M, Stegun I A. Handbook of Mathematical Functions[M]. New York, USA: Dover Publications, 1972.
  • 7DAWE T C, STAKES D S, MCGILL R R, et al. Subsea instrument deployments: methodology and techniques using a work class remotely operated vehicle (ROV)[C]//Proceedings of the 1998 Oecans Conference. New York: IEEE, 1998:1589 - 1593.
  • 8施生达.潜艇操纵十牛[M].北京:同防工、业出版社,1995.
  • 9YOERGER D R, NEWMAN J B, SLOTINE J. Supervisory control system for the JASON ROV[J]. IEEE Journal of Oceanic Engineering, 1986, 11(3): 392-400.
  • 10YOERGER D R, SLOTINE J. Robust trajectory control of underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 462 - 470.

共引文献67

同被引文献30

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部