期刊文献+

Real Paley-Wiener theorems for the Clifford Fourier transform

Real Paley-Wiener theorems for the Clifford Fourier transform
原文传递
导出
摘要 Associated with the Dirac operator and partial derivatives,this paper establishes some real PaleyWiener type theorems to characterize the Clifford-valued functions whose Clifford Fourier transform(CFT) has compact support. Based on the Riemann-Lebesgue theorem for the CFT,the Boas theorem is provided to describe the CFT of Clifford-valued functions that vanish on a neighborhood of the origin. Associated with the Dirac operator and partial derivatives,this paper establishes some real PaleyWiener type theorems to characterize the Clifford-valued functions whose Clifford Fourier transform(CFT) has compact support. Based on the Riemann-Lebesgue theorem for the CFT,the Boas theorem is provided to describe the CFT of Clifford-valued functions that vanish on a neighborhood of the origin.
出处 《Science China Mathematics》 SCIE 2014年第11期2381-2392,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11371007)
关键词 Clifford Fourier transform Dirac operator Paley-Wiener theorem Boas theorem 勒贝格定理 傅里叶变换 维纳 傅立叶变换 CFT 值函数 偏导数 运营商
  • 相关文献

参考文献20

  • 1Andersen N B. Real Paley-Wiener theorems for the Hankel transform. J Fourier Anal Appl, 2006. 12:17- 25.
  • 2Andersen N B, De Jeu M. Real Paley-Wiener theorems and local spectral radius formulas. Trans Amer Math Soc, 2010, 362:3613-3640.
  • 3Bang H H. A property of infinitely differentiable functions. Proc Amer Math Soc, 1990, 108:73 -76.
  • 4Brackx F, De Schepper N, Sommen F. The Clifford Fourier transform. J Fourier Anal Appl, 2005, 11:669 -681.
  • 5Brackx F, De Schepper N, Sommen F. The two-dimensional Clifford Fourier transform. J Math Imag Vision, 2000, 26:5 -18.
  • 6Chert Q H, Li L Q, Ren G B. Generalized Paley-Wiener theorems. Int J Wavelets Multiresolut lnf Process, 2012, 10 1250020 (7 pages).
  • 7Chettaoui C, Othmani Y, Trimche K. On the range of the Dunkl transform on R. Math Sci Res J, 2004, 8:85 -103.
  • 8Ebling J, Scheuermann G. Clifford Fourier transform on vector fields. IEEE T'ans Vis Comput Graph, 2005, 11 469 -479.
  • 9Felsberg M. Low-level image processing with the structure rnultivector. PhD Thesis. Christian-Albrechts-Universitiit Institut fiir Informatik und Praktische Mathematik, Kiel, 2002.
  • 10Hitzer E S M, Bahri M. Clifford Fourier transform on multivector fields and uncertainty principle for dimensions n = 2 (rood 4) and n = 3 (mod 4). Adv Appl Clifford Algebr, 2008, 18:715 -736.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部