期刊文献+

基于Tikhonov正则化的模糊系统辨识方法 被引量:2

Fuzzy Model Identification Method Based on Tikhonov Regularization
原文传递
导出
摘要 考虑了模糊系统辨识过程中的不适定问题.系统前件部分采用标准模糊C均值聚类算法对输入空间进行划分,从已知的系统输入数据中提取系统模糊规则.针对后件参数辨识过程中的不适定性问题,采用Tikhonov正则化方法,在最小化泛函中引入正则化泛函来解决整个辨识过程中的不适定.进一步,应用贝叶斯方法来计算正则化参数,并给出了具体算法.仿真结果表明,该方法具有适定性. We consider the ill-posedness of the fuzzy system identification process. The standard fuzzy c-means clustering algorithm is used to divide the input space, and fuzzy rules are extracted from the known input data in the system. To counteract the ill-posedness in the consequent parameter identification process, we apply the Tikhonov regularization method and introduce the regularized functional in the minimizing functional to solve ill-posed problems. Then we use the Bayesian method to calculate the regularization parameter, and we give the specific algorithm. Simulation resuhs show that this method has well-posedness.
出处 《信息与控制》 CSCD 北大核心 2014年第4期447-450,456,共5页 Information and Control
基金 国家自然科学基金资助项目(61273011 61273003)
关键词 Takagi-Sugeno(T-S)模糊模型 系统辨识 TIKHONOV正则化 数据驱动 Takagi-Sugeno ( T-S ) fuzzymodel system identification Tikhonov regularization data-driven
  • 相关文献

参考文献18

  • 1Liu Y, Huang H Z, Zhang X L. A data-driven approach to selecting imperfect maintenance models [ J ]. IEEE Transactions on Reliability, 2012, 61(1) : 101 -112.
  • 2Formentin S, DeFilippi P, Como M, et al. Data-driven design of braking control systems[ J]. IEEE Transactions on Control Systems Technolo- gy, 2013, 21(1) : 186- 193.
  • 3王晶.一种基于神经网络的数据驱动参数整定法[J].信息与控制,2012,41(2):220-224. 被引量:2
  • 4Takagi S. Fuzzy identification of system and its application to modeling and control[ J ]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1): 116-132.
  • 5祝乃杰,陈蓓,牛玉刚.含有输入时滞的不确定T-S模糊系统的滑模控制[J].信息与控制,2012,41(5):622-627. 被引量:6
  • 6段学超,袁俊,满曰刚.两轮自平衡机器人的动力学建模与模糊进化极点配置控制[J].信息与控制,2013,42(2):189-195. 被引量:10
  • 7Chen L H, Hsueh C C. Fuzzy regressing models using the least squares method based on the concept of distance[ Jl. IEEE Transactions on Fuzzy Systems, 2009, 17 (6) : 1259 - 1272.
  • 8Rob S B, Ahh T C, Pedrycz W. The design methodology of radial basis function neural networks based on fuzzy k-nearest neighbors approach [J]. Fuzzy Sets and System, 2010, 161(13): 1810 -1822.
  • 9Payel G, Melani M. Segmentation of medical images using a genetic algorithm[ C]//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. 2006 : 1171 - 1178.
  • 10韩波,李莉.非线性不适定问题的求解方法及其应用[M].北京:科学出版社,2011:1-118.

二级参考文献53

共引文献39

同被引文献26

  • 1檀国节.一种新的线性分布参数系统辨识方法[J].信息与控制,1994,23(4):212-214. 被引量:2
  • 2杨慧中,张勇.Box-Jenkins模型偏差补偿方法与其他辨识方法的比较[J].控制理论与应用,2007,24(2):215-222. 被引量:13
  • 3Shi Y, Yu B. Output feedback stabilization of networked control systems with random delays modeled by Markov chains[ J]. IEEE Transactions on Automatic Control, 2009, 54 (7) : 1668 - 1674.
  • 4Shi Y, Huang J, Yu B. Robust tracking control of networked control systems: Application to a networked DC motor[ J]. IEEE Transactions on Industrial Electronics, 2013, 60(12) : 5864 -5874.
  • 5Li H, Shi Y. Robust distributed model predictive control of constrained continuous-time nonlinear systems: A robustness constraint approach [ J ]. IEEE Transactions on Automatic Control, 2014, 59 (6) : 1673 - 1678.
  • 6Zhang W G. Decomposition based least squares iterative estimation for output error moving average systems [ J ]. Engineering Computations, 2014, 31(4) : 709 -725.
  • 7Voros J. Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones [ J]. IEEE Transactions on Automatic Control, 2004, 48 (12) : 2203 - 2206.
  • 8Voros J. herative algorithm for parameter identification of Hammerstein systems with two-segment nonlinearities[ J]. IEEE Transactions on Au- tomatic Control, 1999, 44( 11 ) : 2145 -2149.
  • 9Kermani M M, Dehestani M. Solving the nonlinear equations for one-dimensional nano-sized model including Rydberg and Varshni potentials and Casimir force using the decomposition method [ J ]. Applied Mathematical Modelling, 2013, 37 (5) : 3399 -3406.
  • 10Ding F, Duan H H. Two-stage parameter estimation algorithms for Box-Jenkins systems[ J]. IET Signal Processing, 2013, 7 (8) : 646 -654.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部