期刊文献+

基于单像素相机重构矩阵优化的影像采集和重构方法 被引量:2

Image Acquisition and Reconstruction Based on Optimization of Reconstruction Matrix of Single-Pixel Camera
下载PDF
导出
摘要 传统的重构矩阵优化算法可以事前确定稀疏变换基,却无法事前确定测量矩阵,尽管能够提高可压缩信号的重构效果,但不利于测量矩阵的硬件实现。针对这些问题,基于事前确定的稀疏变换基和单像素相机测量矩阵,提出了无需把二维影像转化成一维信号的基于线阵推扫和重构矩阵优化的单像素相机影像采集和重构方法。该方法实现了以事前确定的单像素相机测量矩阵采集数据,以事后优化的重构矩阵重构信号。初步解决了针对影像的测量矩阵硬件实现难题,改善提高了影像重构效果。同时回避了"测量矩阵和稀疏变换基不相关性好"的测量矩阵设计原则。实验表明无需把二维影像转化成一维信号的基于线阵推扫和重构矩阵优化的单像素相机影像采集和重构方法是可行的。 Traditional reconstruction matrix optimization algorithm can determine sparse transform base beforehand, but can not determine measurement matrix in advance. Although effect of the reconstructed compressible signal can be improved, but hardware design of measurement matrix is difficult. Based on pre-determined sparse transform base and single-pixel camera measurement matrix, an image acquisition and reconstruction method of single pixel camera based on line array push broom and matrix optimization reconstruction without changing 2D image into one-dimension signal was proposed to solve these problems. Collecting data by pre-determined singlepixel camera measurement matrix and reconstructing signal by optimized reconstruction matrix afterwards were implemented by this method. The problem of hardware design difficulty of measurement matrix for image was solved initially, and the effect of image reconstruction was improved. The method avoided measurement matrix design principle that the mutual-coherence of measurement matrix and sparse transform base must he good. Ex- periments results showed that the image acquisition and reconstruction method of single pixel camera based on line array push broom and matrix optimization reconstruction without changing 2D image into one-dimension signal was feasible.
作者 程涛 刘玉安
出处 《探测与控制学报》 CSCD 北大核心 2014年第4期30-35,39,共7页 Journal of Detection & Control
基金 国家自然科学基金资助(41461082) 广西自然科学基金资助(2014GXNSFAA118285) 广西高校科学技术研究项目资助(YB2014212) 广西科技大学博士基金项目资助(校科博13212)
关键词 压缩感知 单像素相机 重构矩阵优化 影像采集 影像重构 离散余弦变换矩阵 compressive sensing single-pixel camera reconstruction matrix optimization image acquisition im age reconstruction discrete cosine transform matrix
  • 相关文献

参考文献11

  • 1程涛,朱国宾,刘玉安.基于0-1稀疏循环矩阵的测量矩阵分离研究[J].光学学报,2013,33(2):165-170. 被引量:12
  • 2DONOHO D L. Compressed sensing [J]. Information Theory, IEEE Transactions on, 2006, 52(4) : 289-306.
  • 3ELAD IV Optimized Projections for Compressed Sensing [J]. Signal Processing, IEEE Transactions on, 2007, 55 (12) : 695-702.
  • 4DUARTE-CARVAJALINO J M, SAPIRO G. Learning to Sense Sparse Signals.. Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization [J]. Image Pro- cessing, IEEE Transactions on, 2009, 18(7): 395-408.
  • 5DONOHO D L, TSAIG Y, DRORI I, et al. Sparse So- lution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit [J]. Informa- tion Theory, IEEE Transactions on, 2012, 58 (2).. 94-121.
  • 6CANDES E J, TAO T. Near-Optimal Signal RecoveryFrom Random Projections: Universal Encoding Strate- gies [J]. Information Theory, IEEE Transactions on, 2006, 52(12) :6-25.
  • 7潘榕,刘昱,侯正信,汪少初.基于局部DCT系数的图像压缩感知编码与重构[J].自动化学报,2011,37(6):674-681. 被引量:28
  • 8DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-Pixel Imaging via Compressive Sampling [J]. Signal Processing Magazine, IEEE, 2008, 25(2): 83-91.
  • 9AKCAKAYA M, JINSOO P, TAROKH V. A Coding Theory Approach to Noisy Compressive Sensing Using Low Density Frames [J]. Signal Processing, IEEE Transactions on, 2011, 59(11) :69-79.
  • 10刘亚新,赵瑞珍,胡绍海,姜春晖.用于压缩感知信号重建的正则化自适应匹配追踪算法[J].电子与信息学报,2010,32(11):2713-2717. 被引量:70

二级参考文献42

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Yang J F, Zhang Y, Yin W T. A fast alternating direc- tion method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE Journal of Selected Topics in Signal Pro- cessing, 2010, 4(2): 288-297.
  • 4姚庆东,毕厚杰,王兆华,徐孟侠.图像编码基础(第i版).北京:清华大学出版社,2006.50.
  • 5Xie X C, Yu L J. A new video codec based on compressed sensing. In: Proceedings of the 2nd International Congress on Image and Signal Processing. Tianjin, China: IEEE, 2009. 1-5.
  • 6Sarkis M, Diepold K. Depth map compression via com- pressed sensing. In: Proceedings of the 16th IEEE Interna- tional Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 737-740.
  • 7Zhang Y F, Mei S L, Chen Q Q, Chen Z B. A novel im- age/video coding method based on compressed sensing the- ory. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE, 2008. 1361-1364.
  • 8Candes E J, Romberg J. Sparsity and incoherence in com- pressive sampling. Inverse Problems, 2007, 23(3): 969-985.
  • 9Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 10Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004.

共引文献105

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部