期刊文献+

基于稀疏表示的水声信号分类识别 被引量:5

Classification and Recognition of Underwater Acoustic Signal Based on Sparse Representation
下载PDF
导出
摘要 传统的水声信号分类都是直接使用原信号进行处理的,特征提取耗时长,数据量大,针对这两个缺点,提出了一种压缩感知理论中基于稀疏表示的水声信号特征提取方法;该方法利用了水声信号在DCT变换域的稀疏特性,将信号的稀疏表示作为目标特征,并采用SVM分类算法进行分类识别。仿真结果表明,该方法不仅减少了特征向量的计算时间,还提高了目标分类识别率,还降低了水声信号的传输数据量,压缩率可达96%,在实际工程应用中具有较高的实用价值。 Traditional classification of underwater acoustic signal processing has the problems of time consuming feature extraction and large amount of data. A method based on compressed sensing theory using sparse representation of the acoustic signal feature extraction was introduced. This method utilized the acoustic signal sparse representation in the DCT transforming domain, and regarded the sparse representation of signals as the target feature, and then used SVM classification algorithm for target identification. Simulation results showed that, when using sparse representation as feature vectors, not only greatly reduced the time consuming features of computing, but also lifted effectively the underwater target recognition rate. At the same time, the amount of underwater acoustic data transmitting could be greatly reduced, and the compression rates were up to 96~.
出处 《探测与控制学报》 CSCD 北大核心 2014年第4期67-70,77,共5页 Journal of Detection & Control
关键词 压缩感知 稀疏表示 水声信号 特征提取 compressed sensing sparse representation underwater acoustic signal feature extraction
  • 相关文献

参考文献12

二级参考文献61

  • 1刘建国,李志舜.基于连续小波变换的湖底回波特征提取[J].西北工业大学学报,2006,24(1):111-114. 被引量:4
  • 2张小蓟,张歆,孙进才.基于经验模态分解的目标特征提取与选择[J].西北工业大学学报,2006,24(4):453-456. 被引量:14
  • 3陶笃纯.噪声和振动谱中线谱的提取和连续谱平滑[J].声学学报,1984,9(6):337-344.
  • 4Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 5Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 6Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 7Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 8Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 9Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 10Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215.

共引文献291

同被引文献42

  • 1汤渭霖.声呐目标回波的亮点模型[J].声学学报,1994,19(2):92-100. 被引量:137
  • 2廖晓晰.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000.339-347.
  • 3Cand:s E. Compressive Sampling [ C ]//Proceedings of the International Congress of Mathematicians. Madrid: Amer Mathematical Society, 2006: 1433-1452.
  • 4Richard G, Baraniuk. Compressive Sensing[ J]. IEEE Signal Processing Mag:ine, 2007, 24(4) :118-124.
  • 5Wright J, YANG A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation [ J ]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 2009, 31(2) : 210-227.
  • 6CHEN Y, LIU J, Lv S T. Modulation Classification based on Bispectmm and Sparse Representation in Cognitive Radio [C]//IEEE 13th International Conference on Communica- tion Technology. Piscataway: IEEE Press ,2011:25-28.
  • 7SHEN Y, LIU G H, LIU It. Classification of Power Quali- ty Disturbances based on Random Matrix Transform and Sparse Representation[ C ]//8tb World Congress on Intelli- gent Control and Automation. Pi:ataway: IEEE Press, 2010: 7-9.
  • 8ZHENG C H, ZHANG L, HUANG D S, et al. Metasam- pie-based Sparse Representation for Tumor Classification [ J ]. IEEE- ACM Trans. On Comput Biol Bioinform, 2011, 8(5): 1273-1282.
  • 9Ptucha R, Savakis A E. LGE-KSVD: Robust Sparse Representation Classification [ J ]. IEEE Trans. On Im- age Processing ,2014,23 ( 04 ) : 1737-1750.
  • 10Li Y, Yu Z, Bi N, et al. Sparse Representation for Brain Signal Processing : A Tutorial on Methods and Applications [ J ]. IEEE Signal Processing Magazine, 2014, 31 (03) :96-106.

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部