期刊文献+

炭涂层硅/石墨烯纳米复合材料的制备及其储锂性能 被引量:5

Preparation and lithium storage performance of a carbon-coated Si /graphene nanocomposite
下载PDF
导出
摘要 石墨烯、柠檬酸和硅纳米颗粒的乙醇混合物经超声分散、乙醇挥发和热处理(800℃1h)制备出炭涂层硅/石墨烯(Si@C/G)纳米复合材料。透射电镜表明,Si纳米颗粒的表面形成了一层厚度约为2nm的均匀炭涂层,石墨烯片层支撑着Si@C纳米粒子,且两者具有较强的相互作用。作为锂离子电池负极材料,Si@C/G电极具有较高的库仑效率,在500 mA·g-1的电流密度下,100卷循环后比容量为1431mAh·g-1,表现出优越的循环稳定性。Si@C/G优异的电化学性能归因于石墨烯片层的高导热率、高导电率和优良的机械柔韧性。 A carbon-coated Si/ graphene (Si@ C/ G) nanocomposite was prepared by dispersing a mixture containing graphene, citric acid, and Si nanoparticles in ethanol, followed by drying and carbonization at 800 ℃ for 1 h. Transmission electron microsco-py revealed that a carbon layer with a uniform thickness of ca. 2 nm was formed on the surface of the Si nanoparticles. The Si@ C nanoparticles were supported by graphene sheets with an strong interaction between them. However, the carbon layer on the Si@ C nanoparticles without the graphene addition was not uniform. This can be ascribed to the high thermal conductivity of graphene that ensures a uniform temperature distribution on the surface of the Si nanoparticles. As an anode material for lithium ion batteries, the Si@ C/ G electrode exhibits a high initial coulombic efficiency of 82. 7% and an excellent cycling stability with a capacity of 1 431 mAh·g-1 after 100 cycles at a current density of 500 mA·g-1 . Such excellent electrochemical performance is attributed to the high electrical conductivity and superior flexibility of graphene.
作者 李海 吕春祥
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2014年第4期295-300,共6页 New Carbon Materials
关键词 硅纳米颗粒 石墨烯 炭涂层 锂离子电池 Silicon nanoparticles Graphene Carbon coating Lithium ion batteries
  • 相关文献

参考文献23

  • 1Boukamp B A, Lesh G C, Huggins R A. All-solid lithium elec- trodes with mixed-conductor matrix [ J ]. J Electrochem Soc, 1981, 128(4) : 725-729.
  • 2Poizot P, Laruelle S, Grugeon S, et al. Searching for new anode materials for the Li-ion technology : time to deviate from the usu- al path[J]. J Power Sources, 2001, 97-98 : 235-239.
  • 3Kasavajjula U, Wang C S, Appleby A J. Nano-and bulk-silicon- based insertion anodes for lithium-ion secondary cells [ J ]. J Power Sources, 2007, 163(2) : 1003-1039.
  • 4Huggins R A. Lithium alloy negative electrodes [ J ]. J Power Sources, 1999, 81: 13-19.
  • 5Ng S H, Wang J Z, Wexler D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as an- odes for lithium-ion batteries[ J]. Angew Chem Int Edit, 2006, 45(41) : 6896-6899.
  • 6Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior storage performance of a Si@ SiOx/C nanocomposite as anode material for lithium-ion batteries [ J ]. Angew Chem Int Edit, 2008, 47 (9) : 1645-1649.
  • 7Hwa Y, Kim W S, Hong S H, et al. High capacity and rate ca- pability of core-shell structured nano-Si/C anode for Li-ion bat- teries[ J]. Electrochim Acta, 2012, 71 : 201-205.
  • 8Xiang H, Zhang K, Ji G, et al. Graphene/nanosized silicon composites for lithium battery anodes with improved cycling sta- bility[J]. Carbon, 2011, 49(5): 1787-1796.
  • 9Lee J K, Smith K B, Hayner C M, et al. Silicon nanoparticles- graphene paper composites for Li ion battery anodes [ J]. Chem Commun, 2010, 46 (12) : 2025-2027.
  • 10Zhou X S, Yin Y X, Wan L J, et al. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries [ J ]. Chem Commun, 2012, 48(16) : 2198-2200.

同被引文献58

  • 1王黎东,费维栋.高效率低成本机械剥离制备石墨烯或氧化石墨烯的方法:中国,201010179119.1[P].2010-05-21.
  • 2Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5296):666-669.
  • 3Yanwu Zhu, Shanthi Murali, Weiwei Cai, et al. Graphene and graphene oxide: synthesis, properties, and applications [J]. Advanced Materials, 2010, 22(35), 3906-3924.
  • 4Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
  • 5Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5296):666-669.
  • 6Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of singer-layer graphene [J]. Nano Letter, 2008, 8(3):902-907.
  • 7Chae H K, Siberio-perez D Y, Kim J, et al. A rote to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974):523-527.
  • 8Lee C G, Wei X D, Kysar J W, et al. Measurement of the the elastic properities and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):358-388.
  • 9Wallace P R. The band theory of graphite [J]. Phys Rev, 1947, 71(9):622-634.
  • 10Mcclure J W. Diamagnetism of graphite [J]. Phys Rev, 1956. 104(3):666-671.

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部