期刊文献+

基于SIFT和MSE的局部聚集特征描述新算法 被引量:3

The New Descriptor Algorithm of Local Aggregation Features Based on SIFT and MSE
下载PDF
导出
摘要 为寻找更具鲁棒性和计算简便的特征描述子,提出了一种基于SIFT和MSE的局部聚集特征描述算法.分析说明了该方法在继承SIFT算法良好性质的基础上,通过对多尺度下信息熵的估计,能够快速准确找出图像局部结构特征并利用改进的非线性降维方法对特征描述子进行特征重划.实验结果表明,在图像尺度缩放、旋转、模糊、亮度变化等多种变换条件下,该描述子不仅能够取得更多的特征效果,并且计算速度较原算法大幅提升.该算法适用于实时性要求较高,存在旋转、尺度缩放、亮度差异等变换下的结构图像寻找描述子. In order search a more robustness and convenient count method which shows a new feature descriptor algorithm is proposed in this paper. It analyzes and explains this way could quickly and accttrately to describe local slructure features based on inherit a higher quality of SIFF and MSE. In addition, it makes use of a changed locally linear embedding approach to process data so that it could reduce dimension. Experiment has drawn the conclusion that not only it could obtain more and betters the proposed descriptor but also the count speed could faster than SIFT for the image with zoom, rotation, blurring and illumination varying. This algorithm is suitable for searching the images which has structured features, when it exits multiple of varying.
出处 《电子学报》 EI CAS CSCD 北大核心 2014年第8期1619-1623,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61175029 No.61203268 No.61202339)
关键词 多尺度熵 局部聚集特征 非线性降维 multiscale entropy local aggregation features locally linear embedding
  • 相关文献

参考文献14

  • 1唐永鹤,卢焕章,胡谋法.基于Laplacian的局部特征描述算法[J].光学精密工程,2011,19(12):2999-3006. 被引量:12
  • 2曹健,刘琼昕,高春晓,刘玉树.角点特征在目标识别中的应用[J].北京理工大学学报,2011,31(3):308-312. 被引量:7
  • 3Harris C,Stephens M A.Combined corner and edge detector[A].Proceeding of the 4th Alvey Vision Conference[C].Manchester,UK:AVC,1988.147-152.
  • 4K Mikolajczyk,C Schmid.Scale & affine invariant interest point detectors[J].International Journal on Computer Vision,2004,60(1):63-86.
  • 5D G Lowe.Object recognition from local scale invariant features[A].Proceeding of International Conference on Computer Vision[C].Corfu,Greece:ICCV,1999.1150-1157.
  • 6KE Y,SUKTHANKER R.PCA-SIFT:A more distinctive representation for local image descriptors[A].Proceedings of International Conference on Pattern Recognition[C].Washington,USA:ICPR,2004,511-517.
  • 7BAY H,ESS A,THYTELAARS T,et al.Speed-up robust features(SURF)[J].Computer Vision and Image Undersanding,2008,110(15):346-359.
  • 8夏胜平,宋锐,刘建军,张乐峰,虞华,Edwin Hancock.面向非合作目标识别的大规模类属超图建模[J].电子学报,2011,39(6):1399-1404. 被引量:2
  • 9傅卫平,秦川,刘佳,杨世强,王雯.基于SIFT算法的图像目标匹配与定位[J].仪器仪表学报,2011,32(1):163-169. 被引量:122
  • 10Costam,Goldberger A L,Peng C K.Multiscale entropy analysis of complex physiologic time series[J].Physical Review Letters,2002,89(4):1-4.

二级参考文献50

共引文献139

同被引文献20

  • 1Thales S K,Luciano V D,Leila M G F.A resegmentation approach for detecting rectangular objects in high-resolution imagery[J].Geoscience and Remote Sensing Letters,IEEE,2011,8(4):621-625.
  • 2Sirmacek B,Unsalan C.A probabilistic framework to detect buildings in aerial and satellite images[J].Geoscience and Remote Sensing,IEEE Transactions on,2011,48(1):211-221.
  • 3Tao C,Tan Y H,Cai H J,Tian J W.Airport detection from large IKONOS images using clustered SIFT keypoints and region information[J].Geoscience and Remote Sensing,IEEE Transactions on,2011,8(1):128-132.
  • 4Qiao Y,Wang W.A theory of phase singularities for image representation and its applications to object tracking and image matching[J].Image Processing,IEEE Transactions on,2009,18(10):2153-2166.
  • 5Chen C,Schonfeld D.Aparticle filtering framework for joint video tracking and pose estimation[J].Image Processing,IEEE Transactions on,2010,19(6):1625-1634.
  • 6Imai J I,Li W M,Kaneko M.Online object modeling method for occlusion robust tracking[A].Robot Human Interactive Communication,2009[C].Toyama:IEEE,2009.58-63.
  • 7Nasser H,Nicolas D.Real-time hand gesture detection and recognition using bag-of-features and support vector machine techniques[J].Instrumentations and Measurement,IEEE Transactions on,2011,60(11):3592-3606.
  • 8Lowe D G.Distinctive image features from scale-invariant keypoint[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 9Apostolos P,Christos N.Vehicle logo recognition using a SIFT-based enhanced matching scheme[J].Intelligent Transportation Systems,IEEE Transactions on,2010,11(2):322-328.
  • 10Zhao W L,Chong W N.Flip-invariant SIFT for copy and object detection[J].Image Processing,IEEE Transactions on,2013,22(3):980-991.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部