期刊文献+

群智能算法优化SVR预测模型的应用与分析 被引量:2

Application and Analysis about Optimization of SVR Forecasting Model by Swarm Intelligence Algorithm
下载PDF
导出
摘要 群体智能是基于生物群体行为规律的智能计算技术,常用以解决参数寻优等问题;作为群体智能的两种典型算法,蚁群算法和粒子群算法应用极为广泛;文章分析了标准蚁群算法和粒子群算法的不足,分别采用改进的蚁群算法和粒子群算法对支持向量机回归模型参数进行优化,并以钕铁硼吸氢阶段合金氢含量预测为例,通过MATLAB对改进后的预测模型进行了仿真验证,最终给出了两种方法优化后,模型的预测效果及性能对比;仿真结果表明,改进的群体智能算法对工艺优化控制有着重要的意义。 Asa intelligent computing technology based on biological laws of group behavior, Swarm intelligence is widely used to solve the problems of parameter optimization. Ant colony algorithm and particle swarm optimization are widely used as two typical algorithms of swarm intelligence. In this paper we did analyze the insignificance of the standard ant colony algorithm and particle swarm optimization, then the improved ant colony algorithm and particle swarm optimization were respectively used to optimize the parameters of the regression model of support vector machine, and the hydrogen content of NdFeB alloy in the hydrogen absorption stage is taken as an example to simulates and verifies the improved model by MATLAB. The contrast of prediction performance of the regression model between two algorithms was given at last. The results of simulation indicate that the improved swarm intelligence algorithm has important significance on optimizing the process control.
作者 朱林 陆春伟
出处 《计算机测量与控制》 北大核心 2014年第9期2890-2892,共3页 Computer Measurement &Control
基金 国家自然科学基金(61064001)
关键词 改进蚁群算法 改进粒子群算法 支持向量机回归模型 参数寻优 收敛速度 相对误差 improved ant colony algorithm improved particle swarm optimization regress model of support vector machine parameter optimization convergent rate relative error
  • 相关文献

参考文献7

  • 1王艳玲,李龙澍,胡哲.群体智能优化算法[J].计算机技术与发展,2008,18(8):114-117. 被引量:18
  • 2Dorigo M, Gambardella L M. Ant Colony System: A. CooperativeLearning Approach to the Traveling Salesman Problem [J]. IEEETransactions on Evolutionary Computations, 1997,1 (1): 53 - 66.
  • 3Kennedy J, Eberhart R C. Particle swarm optimization [A]. Pro-ceedings of IEEE International Conference on Neural Networks[C]. NJ: [s. n. ],1995: 1942 - 1948.
  • 4付云朋,王宏力,侯青剑.基于改进蚁群算法的故障树最优检测次序研究[J].战术导弹技术,2009(6):23-25. 被引量:4
  • 5熊伟丽,徐保国.粒子群算法在支持向量机参数选择优化中的应用研究[A]. 2007中国控制与决策学术年会论文集[C]. 2007:447 -452.
  • 6罗阳.展望21世纪的中国稀土磁体产业[A].第九届中国稀土企业家联谊会会议论文集[C]. 2002: 111-132.
  • 7侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667. 被引量:218

二级参考文献17

共引文献237

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部