期刊文献+

基于强化学习的非玩家角色行为改进 被引量:2

Using reinforcement learning to improve NPC intelligence
原文传递
导出
摘要 当前游戏中非玩家角色(Non-player Character,NPC)的行为主要基于随机决策或者传统的预定义行为决策,该方法的NPC不具有对游戏环境的自主学习能力.本文研究的目的是探索将强化学习方法应用于提高游戏NPC智能,使NPC在游戏过程中能实时地学习和适应演进的游戏环境,产生最合适的行为策略来响应玩家.本文提出一种动态训练强化学习的探索率参数方法,并将该方法应用于经典的Bomber Man游戏中.实验结果表明,该方法训练的NPC比非强化学习和传统强化学习训练的NPC具有更高的智能. Traditional non-player character (NPC) strategies are developed mainly based on stochastic decision or predefined behavior decision and these methods lack the capability of automatic learning. The purpose of the research is to exploring the application of reinforcement learning techniques in improving NPC intelligence, i.e. , producing the optimal NPC strategy that enables NPC to learn and adjust itself to game context. Specifically, the authors first presented a method of dynamically training exploration rate of reinforcement learning, and then applied the method into a classical game "Bomber". The results show that the presented method can obtain better NPC intelligence compared to traditional reinforcement learning methods.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期915-920,共6页 Journal of Sichuan University(Natural Science Edition)
基金 四川省科技支撑项目(2013GZX0138 2012GZ0091)
关键词 游戏智能 强化学习 非玩家角色 Game intelligence Reinforcement learning NPC
  • 相关文献

参考文献20

  • 1Von A L.Games with a purpose[J].Comput,2006,39(6):92.
  • 2Szita I.Reinforcement learning in games[J].Reinforcement Learning,2012,12:539.
  • 3Tesauro G.TD Gammon,a self teaching backgammon program,achieves master level play[J].Neural Comput,1994,6(2):215.
  • 4Sutton R S,Barto A G.Reinforcement learning:An introduction[M].Cambridge:MIT press,1998.
  • 5Duan J,Gough N E,Mehdi Q H.Multi-agent reinforcement learning for computer game agents[C]//Proceedings of the 3rd international conference on intelligent games and simulation.London:The University of Wolverhampton,2002:104.
  • 6Galway L, Charles D, Black M, et al. Temporal difference control within a dynamic environment [C]//Proceedings of the 8th international confer- ence on intelligent games and simulation. Italy: The University of Bologna, 2007: 42.
  • 7Wender S,Watson I.Using reinforcement learning for city site selection in the turn-based strategy game Civilization Ⅳ[C]// Proceedings of IEEE Symposium on Computational Intelligence and Games.Perth,Australia:IEEE,2008:372.
  • 8Graepel T,Herbrich R,Gold J.Learning to fight[C]//Proceedings of the International Conference on Computer Games:Artificial Intelligence,Design and Education.Wolverhampton,UK:Microsoft UK,2004.
  • 9Smith M,Lee-Urban S,Mu(n)oz-Avila H.Retaliate:Learning winning policies in first person shooter games[C]// William Cheetham.IAAI'07 Proceedings of the 19th national conference on Innovative applications of artificial intelligence-Volume 2.Vancouver:AAAI Press,2007:1801.
  • 10宋炯,金钊.采用多智能体强化学习的交通信号优化控制[J].制造业自动化,2012,34(17):13-16. 被引量:1

二级参考文献72

共引文献466

同被引文献4

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部