期刊文献+

空间误差模型在黑龙江省森林碳储量空间分布的应用 被引量:18

Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model
原文传递
导出
摘要 基于黑龙江省2010年一类调查数据和重点公益林检测样地(5075块)数据以及同期黑龙江省、吉林省和内蒙古自治区59个气象站的气象数据,以森林碳储量为因变量,以胸径、每公顷株数、海拔、坡度及降雨与温度的乘积因子作为自变量,利用GeoDA软件构建空间误差模型,用全局Moran I来描述不同空间尺度下模型残差的空间自相关性,计算最佳带宽(25 km)下的局域Moran I来表现模型残差的空间分布,计算组内方差来解释模型残差的空间异质性,最后将模型的预估结果生成黑龙江省森林碳储量的空间分布图.结果表明:黑龙江省森林碳储量的分布具有空间效应;本文所选林分因子、地形因子及气象因子都显著影响森林碳储量的空间分布,胸径是最主要的因子.空间误差模型可以很好地解决模型残差的空间自相关性及空间异质性.由模型的预估结果可以看出,森林碳储量的空间分布存在很大差异,张广才岭、小兴安岭及大兴安岭地区是森林分布较密集的区域,松嫩平原地区的森林碳储量分布较少,完达山地区处于中等水平. Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH) , number of trees per hectare ( TPH), elevation (Elev) , slope ( Slope), and product of precipitation and temperature (Rain_Temp). Global Moran' s I was computed for describing overall spatial auto- correlations of model results at different spatial scales. Local Moran' s I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial topographic and meteorological factors, especially correlation and heterogeneity well. There were effect and was significantly influenced by stand, average DBH. SEM could solve the spatial auto- significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing' an Mountain where dense forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage.
出处 《应用生态学报》 CAS CSCD 北大核心 2014年第10期2779-2786,共8页 Chinese Journal of Applied Ecology
基金 国家"十二五"科技支撑计划项目(2011BAD37B02) 长江学者创新团队发展计划项目(IRT1054)资助
关键词 空间误差模型 森林碳储量空间分布 MORAN指数 spatial error model spatial distribution of forest carbon storage Moran' s index.
  • 相关文献

参考文献24

  • 1毛留喜,孙艳玲,延晓冬.陆地生态系统碳循环模型研究概述[J].应用生态学报,2006,17(11):2189-2195. 被引量:40
  • 2吕景辉,任天忠,闫德仁.国内森林碳汇研究概述[J].内蒙古林业科技,2008,34(2):43-47. 被引量:44
  • 3黄从德,张健,杨万勤,唐宵.四川森林植被碳储量的时空变化[J].应用生态学报,2007,18(12):2687-2692. 被引量:74
  • 4方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].Acta Botanica Sinica,2001,43(9):967-973. 被引量:498
  • 5Du H, Zhou G, Fan W, et al. Spatial heterogeneity and carbon contribution of abovegrnund biomass of moso bamboo by using geostatistical theory. Plant Ecology, 2010, 207:131-139.
  • 6Myeong S, Nowak D J, Duggin MJ. A temporal analysis of urban forest carbon storage using remote sensing. Re- mote Sensing of Environment, 2006, 101:277-282.
  • 7Sales MH, Souza J, Kyriakidis PC, et al. Improving spatial distribution estimation of forest biomass with geostatistics: A case study for Rondonia, Brazil. Ecology Modelling, 2007, 205:221-230.
  • 8Ord JK, Geties A. Local spatial autocorrelation statistics: Distribution issues and an application. Geographical Analysis, 1995, 27:286-306.
  • 9Lichstein JW, Slmins SA, Shriner KE. Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 2002, 72:445-463.
  • 10Anselin L. Spatial Econometrics: Methods and Models. Dordrecht : Kluwer Academic Publishers, 1988.

二级参考文献114

共引文献1331

同被引文献317

引证文献18

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部