期刊文献+

基于局部保持的核稀疏表示字典学习 被引量:3

Locality Preserving Based Kernel Dictionary Learning for Sparse Representation
下载PDF
导出
摘要 为了利用核技巧提高分类性能,在局部保持的稀疏表示字典学习的基础上,提出了两种核化的稀疏表示字典学习方法.首先,原始训练数据被投影到高维核空间,进行基于局部保持的核稀疏表示字典学习;其次,在稀疏系数上强加核局部保持约束,进行基于核局部保持的核稀疏表示字典学习,实验结果表明,该方法的分类识别结果优于其他方法。 In order to further improve the classification performance via kernel tricks, two new kernel dictionary learning methods are proposed for sparse representation, which are extended from dictionary learning via locality preserving for sparse representation (LPDL). First, the original training data are projected into a high dimensional kernel space, then locality preserving based kernel dictionary learning for sparse representation (LPKDL) is proposed. Second, the kernelized locality preserving criterion is imposed on the sparse coefficients, and then the kernelized locality preserving based kernel dictionary learning for sparse representation (KLPKDL) is proposed. Experimental results show that the
出处 《自动化学报》 EI CSCD 北大核心 2014年第10期2295-2305,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61202228 610731116) 高等学校博士学科点专项科研基金(20103401120005) 安徽省高校自然科学研究重点项目(KJ2012A004 KJ2012A008)资助~~
关键词 字典学习 稀疏表示 核空间 局部保持 Dictionary learning, sparse representation, kernel space, locality preserving
  • 相关文献

参考文献24

  • 1刘芳,武娇,杨淑媛,焦李成.结构化压缩感知研究进展[J].自动化学报,2013,39(12):1980-1995. 被引量:46
  • 2Wright J, Yang A Y, Ganesh A, Sastry S S. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 3胡正平,宋淑芬.基于类别相关近邻子空间的最大似然稀疏表示鲁棒图像识别算法[J].自动化学报,2012,38(9):1420-1427. 被引量:12
  • 4马小虎,谭延琪.基于鉴别稀疏保持嵌入的人脸识别算法[J].自动化学报,2014,40(1):73-82. 被引量:56
  • 5Engan K, Aase S O, Hakon H J. Method of optimal directions for frame design. In: Proceedings of Acoustics, Speech, and Signal Processing. Arizona, USA: IEEE, 1999, 5: 2443-2446.
  • 6Aharon M, Elad M, Bruckstein M A. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 7Yang M, Zhang L, Feng X. Fisher discrimination dictionary learning for sparse representation. In: Proceedings of 2011 IEEE International Conference on Computer Vision(ICCV). Barcelona, Spain: IEEE, 2011. 543-550.
  • 8He X F, Niyogi P. Locality preserving projections. Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2003. 152-160.
  • 9陈思宝,赵令,罗斌.局部保持的稀疏表示字典学习[J].华南理工大学学报(自然科学版),2014,42(1):142-146. 被引量:6
  • 10Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319.

二级参考文献70

  • 1Wright J, Yang A Y, Ganesh A, Sastry S S, Ma Y. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 2Huang J Z, Huang X L, Metaxas D. Simultaneous image transformation and sparse representation recovery. In: Proceedings of the 26th IEEE Conference on Computer Vision and Image Recognition. Anchorage, United States: IEEE, 2008. 1-8.
  • 3Wagner A, Wright J, Ganesh A, Zhou Z H, Ma Y. Towards a practical face recognition system: robust registration and illumination by sparse representation. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Image Recognition Workshops. Miami, United States: IEEE, 2009. 597-604.
  • 4Wright J, Ma Y. Dense error correction via l1 minimization. IEEE Transactions on Information Theory, 2010, 56(7): 3540-3560.
  • 5Yang M, Zhang L, Yang J, Zhang D. Robust sparse coding for face recognition. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Image Recognition. Springs, United States: IEEE, 2011. 625-632.
  • 6He R, Hu B G, Zheng W S, Guo Y Q. Two-stage sparse representation for robust recognition on large-scale database. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference. Atlanta, United States: AAAI, 2010. 475-480.
  • 7Huang J B, Yang M H. Fast sparse representation with prototypes. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Image Recognition. San Francisco, United States: IEEE, 2010. 3618-3625.
  • 8Li C G, Guo J, Zhang H G. Local sparse representation based classification. In: Proceedings of the 2010 International Conference on Pattern Recognition. Istanbul, Turkey: ICPR, 2010. 649-652.
  • 9Zhang N, Yang J. K nearest neighbor based local sparse representation classifier. In: Proceedings of the 2010 Chinese Conference on Pattern Recognition. Chongqing, China: CCPR, 2010. 400-404.
  • 10Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B, 2011, 73(3): 273-282.

共引文献115

同被引文献17

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部