摘要
通过总结近年来微生物燃料电池(MFC)与常规污水处理技术的结合案例,发现与MFC结合的污水处理技术主要集中在物理化学法、生物法及高级氧化法三类。与物理化学法的结合侧重于利用MFC的产电特性,如电吸附法和电渗析法;与生物法的结合分为好氧和厌氧法两种方式,主要利用MFC的多重系统特性,大大提升除污性能:与高级氧化法的结合体现在光催化法、电化学法和电Fenton法三方面,其中,与电benton法的结合是研究的热点。将MFC与常规污水处理技术从产能和净化的双重角度进行结合,既为节能型污水处理技术的发展奠定基础,同时也扩大了MFC的应用范围,为今后MFC与其他技术的结合研究提供了借鉴和依据。
The combination of MFC with conventional water treatment technologies were concluded.The water treatment technologies combined with MFC were focused on physical-chemical processes,biological methods and advanced oxidation processes.The emphasis of combination of MFC and physical-chemical processes was placed on the utilization of the energy-generation character of MFC,such as electric adsorption and electrodialysis.And combination with biological methods was classified as aerobic and anaerobic methods,which made use of the multiple system of MFC to greatly improve the pollutants removal.The combination with advanced oxidation was divided into three aspects,i.e.photocatalysis,electrochemical meth-ods and electro-Fenton methods,among which the focus was the combination with electro-Fenton methods.Considering ener-gy generating and wastewater purification,the foundation of energy-saving water treatment technology can be laid by combi-nation of MFC and the traditional wastewater treatment technology and the application scope of MFC was expanded simulta-neously,providing the reference of integration systems.
出处
《世界科技研究与发展》
CSCD
2014年第5期586-593,共8页
World Sci-Tech R&D
基金
高等学校博士学科点专项科研基金(20120022120005)
国家自然科学基金(21307117)
北京市高等学校青年英才计划项目(YETP0657)资助
关键词
微生物燃料电池
常规污水处理技术
结合
净化
节能
Microbial fuel cell ( MFC )
conventional wastewater treatment technology
combination
purification
energysaving