期刊文献+

大数据分析中的关联挖掘 被引量:10

Data Mining Association in the Data Analysis
下载PDF
导出
摘要 在这个信息量爆炸的年代,大数据越来越贴近我们的生活。论文从大数据从何而来、如何研究大数据入手,通过对大数据分析流程框架进行阐述,提出了大数据分析中关联挖掘的重要性。并通过对大数据关联挖掘给出了相应的研究方案,通过系统对其关联模式进行分析,同时也可通过人为的参数选择对研究的参数进行分析、筛选和保留。在大数据分析的过程中,若能很好地利用关联规则的挖掘,将会带来更广阔的实际价值。 In this era with the amount information explosion ,the big data is more and more close to our lives .Firstly where the big data came from and how to study the big data are introduced .Then ,the framework of the data analysis pro-cessing is introduced and the importance of the big data mining is elaborated .It provided the studying ways of the big data mining ,and the analytic system can analyze the mining scheme ,meanwhile ,the users can use the artificial selection of pa-rameters to manage the parameters for analysis ,selection and retention .In the course of big data analysis ,if we can use min-ing association rules better ,it will bring more value .
出处 《计算机与数字工程》 2014年第10期1924-1928,共5页 Computer & Digital Engineering
基金 国家科技重大专项(编号:2011ZX05023-005-012)资助
关键词 数据挖掘 大数据 大数据分析 关联挖掘 分析框架 data mining big data big data analysis mining association analytic framework
  • 相关文献

参考文献9

  • 1Twenty Experts Define Cloud Computing. SYS-CON Media Inc[EB/OL]. http://cloudcomputing, sys-con. com/read/612375_p, htm,2008.
  • 2International Telecommunication Union, Internet Re- ports 2005: The Internet of things[R]. Geneva: ITU, 2005.
  • 3城田真琴.大数据的冲击[M].北京:人民邮电出版社,2013.
  • 4Cohen J, Dolan B, Dunlap M, et al. MAD skills: New analysis practices for big data[J]. VLDB, 2009,2 (2) : 1481-1492.
  • 5Bill Franks.驾驭大数据[M].黄海,车皓阳,王悦,等,译.北京:人民邮电出版社,2013.
  • 6WANG Mo, I.IN Xunming, WANG Wei, et al. Map DupReducer: Detecting near duplicates over massive datasets. In: Elmagarmid AK, AgrawalD, eds. Proe. of the SIGMOD. [M]. Indiana: ACM Press, 2010: 1119-1122.
  • 7王珊,王会举,覃雄派,周烜.架构大数据:挑战、现状与展望[J].计算机学报,2011,34(10):1741-1752. 被引量:616
  • 8[美]AnandRajarman,[美]JeffreyDavidUllman.大数据互联网大规模数据挖掘与分布式处理[M].北京:人民邮电出版社,2012:10-34.
  • 9Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan. A Microeconomic View of Data Mining[J]. Data mining and knowledge discovery, 19 9 8,2 ( 4 ) : 311- 324.

二级参考文献42

  • 1[OL].<http://hadoop.apache.org.>.
  • 2WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 3TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 4Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 5Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 6Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 7DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.
  • 8Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219.
  • 9Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7.
  • 10http: //www. dbms2, com/2008/08/26/known-applications of mapreduce/.

共引文献643

同被引文献59

引证文献10

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部