摘要
Fish biomass is a critical component of fishery stock assessment and management and it is often estimated from ocean primary production(OPP). However, the relationship between the biomass of a fish stock and OPP is always complicated due to a variety of trophic controls in the ecosystem. In this paper, we examine the quantitative relationship between the biomass of chub mackerel(Scomber japonicus) and net primary production(NPP) in the southern East China Sea(SECS), using catch and effort data from the Chinese mainland large light-purse seine fishery logbook and NPP derived from remote sensing. We further discuss the mechanisms of trophic control in regulating this relationship. The results show a significant non-linear relationship exists between standardized CPUE(Catch-Per-Unit-Effort) and NPP(P〈0.05). This relationship can be described by a convex parabolic curve, where the biomass of chub mackerel increases with NPP to a maximum and then decreases when the NPP exceeds this point. The results imply that the ecosystem in the SECS is subject to complex trophic controls. We speculate that the change in abundance of key species at intermediate trophic levels and/or interspecific competition might contribute to this complex relationship.
Fish biomass is a critical component of fishery stock assessment and management and it is often estimated from ocean primary production(OPP). However, the relationship between the biomass of a fish stock and OPP is always complicated due to a variety of trophic controls in the ecosystem. In this paper, we examine the quantitative relationship between the biomass of chub mackerel(Scomber japonicus) and net primary production(NPP) in the southern East China Sea(SECS), using catch and effort data from the Chinese mainland large light-purse seine fishery logbook and NPP derived from remote sensing. We further discuss the mechanisms of trophic control in regulating this relationship. The results show a significant non-linear relationship exists between standardized CPUE(Catch-Per-Unit-Effort) and NPP(P〈0.05). This relationship can be described by a convex parabolic curve, where the biomass of chub mackerel increases with NPP to a maximum and then decreases when the NPP exceeds this point. The results imply that the ecosystem in the SECS is subject to complex trophic controls. We speculate that the change in abundance of key species at intermediate trophic levels and/or interspecific competition might contribute to this complex relationship.
基金
The Industrialization Project of National Development and Reform Commission under contract No.2159999
the Shanghai Universities First-class Disciplines Project(Fisheries)
The National High-tech Industrialization Project of Remote Sensing System Development for High Resolution Ocean Satellite and Demonstration Application