期刊文献+

基于MPSO的有限缓冲区多产品厂间歇调度问题的研究 被引量:1

A Study of the MPSO-based batch scheduling with limited buffers
下载PDF
导出
摘要 研究了以最小化最大完工时间为目标的有限缓冲区多产品厂间歇调度问题,提出了一种基于多种群粒子群优化(MPSO)的间歇调度算法。该算法采用多种群,增加了种群初始粒子的多样性,在每一代子种群并行进化的过程中引入移民粒子,使子种群之间相互影响和促进,避免算法过早地陷入局部最优,提高了算法的全局搜索能力;每代进化后选出子种群中的优秀粒子作为精华种群,并对其进行变邻域搜索(VNS),进一步提高了算法的收敛精度。通过对不同规模调度问题的仿真,以及与其它算法的对比,证明了该算法解决有限缓冲区多产品厂间歇调度问题的有效性和优越性。 For minimizing the total flow time of batch production,the bath scheduling problem with limited buffers was studied,and a batch scheduling algorithm based on the multi-swarm particle swarm optimization (MPSO) was proposed.The algorithm uses multiple swarms to increase the diversity of initial particles,and selects several good particles of each sub-swarm as the immigrant particles in the process of parallel evolution of sub-swarms to make the sub-swarms affect and promote each other,which prevents the result running into the local optimum prematurely and enhances the global research ability.It utilizes the variable neighborhood search (VNS) on the elite swarm consisting of each sub-swarm' s best particle to further improve its convergence accuracy.The effectiveness of this algorithm was verified by the simulation of different scales of scheduling and the comparison of its performance with other algorithms.The proposed algorithm can solve the batch scheduling problem with limited buffers.
出处 《高技术通讯》 CAS CSCD 北大核心 2014年第8期866-873,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61104178 61174040)资助项目
关键词 多种群粒子群优化(MPSO) 有限缓冲区 间歇调度 移民粒子 变邻域搜索(VNS) mutil-swarm particle swarm optimization (MPSO) limited buffers batch scheduling immigrant particle variable neighborhood search (VNS)
  • 相关文献

参考文献15

  • 1Liu S Q, Kozan E. Scheduling a flow shop with combined buffer conditions. International Journal of Production Economics, 2009, 117 ( 2 ) :371-380.
  • 2Hall N G, Sriskandarajah C. Survey of machine schedu- ling problems with blocking and no-wait in process. Oper- ations Research, 1996, 44 ( 3 ) : 510-525.
  • 3Thornton H W, Hunsucker J L. A new heuristic for mini- mal makespan in flow shops with multiple processors and no intermediate storage. European Journal of Operational Research, 2004, 152(1): 96-114.
  • 4Zhu J, Gu X S. A new particle swarm optimization algo- rithm for short-term scheduling of single-stage batch plants with parallel lines. In : Proceeding of the 6th Inter- national Conference on Intelligent Systems Design and Applications, Jinan, China, 2006.2:673-678.
  • 5Liu B, Wang L, Jin Y H. An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers. Computers and Operations Research , 2008,35 ( 9 ) : 2791 -2804.
  • 6Lei D M, Zhang Q F, Wen C, et al. Genetic algorithm based multi-objective scheduling in a flow shop with batch processing machines. In: Proceedings of the 2010 8th World Congress on Intelligent Control and Automation, Ji- nan, China, 2010. 694-699.
  • 7Duan J H, Qiao G Y, Zhang M. Solving the flow shop problem with limited buffers using differential evolution. In: Proceedings of the 2011 Chinese Control and Decision Conference, Mianyang, China, 2011. 1509-1513.
  • 8胡蓉,钱斌.一种求解随机有限缓冲区流水线调度的混合差分进化算法[J].自动化学报,2009,35(12):1580-1586. 被引量:23
  • 9Zeng M, Long Q Y, Liu Q M. Cellular automata variation particle swarm optimization algorithm for batch schedu- ling. In : Proceeding of the 2012 International Conference on Intelligent Systems Design and Engineering Applica- tions, Sanya, China, 2012. 193-196.
  • 10Tang L X, Wang X P. A scatter search algorithm for a multistage production scheduling problem with blocking and semi-continuous batching machine. Control System Technology, 2011,19 ( 5 ) :976-989.

二级参考文献12

  • 1Chun-Hung CHEN.INTELLIGENT SIMULATION FOR ALTERNATIVES COMPARISON AND APPLICATION TO AIR TRAFFIC MANAGEMENT[J].Journal of Systems Science and Systems Engineering,2005,14(1):37-51. 被引量:2
  • 2周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-6. 被引量:72
  • 3[1]Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.1995,4:1942-1948.
  • 4[2]Vanden Bergh F,Engelbrecht A P.Training product unit networks using cooperative particle swarm optimization[C]//IEEE International Joint Conference on Neural Networks.Washington DC,USA.2001:126-131.
  • 5[3]Shi Y,Eberhart R C.A modified particle swarm optimizer[C]//IEEE World Congress on Computational Intelligence.1998:69-73.
  • 6[4]Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of the IEEE Conference on Evolutionary Computation.ICEC,2001:84-88.
  • 7[5]Lφvbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimizer with breeding and subpopulations[C]//Third Genetic and Evolutionary Computation Conference.Piscataway,NJ:IEEE Press,2001:469-476.
  • 8[6]Noel M M,Jeannette T C.Simulation of a new hybrid particle swarm optimization algorithm[C]//Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory.2004:150-153.
  • 9[10]Visakan K,Kirusnapillai S.Stability analysis of theparticle dynamics in particle swarm optimizer[J].IEEE Trans on Evolutionary Computation,2006,10 (3):245-255.
  • 10[11]Guo Z Q,Xiao Y.MIMO system multiuser detection based on particle swarm optimization algorithm[C]//8th International Conference on Signal Processing.Guilin,2006.

共引文献53

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部