期刊文献+

基于最大信息系数的贝叶斯网络结构学习算法 被引量:4

Bayesian network structure learning algorithm based on maximal information coefficient
下载PDF
导出
摘要 为了得到正确的节点次序,构造接近最优的贝叶斯网络结构,利用最大信息系数与条件独立性测试相结合的方法,提出了一种新的贝叶斯网络结构学习算法(MICVO)。该算法利用最大信息系数衡量变量之间的依赖关系,生成初始的无向图,引入惩罚因子δ减少图中冗余边的数量,并将这个无向图分解成多个子结构,确定图中边的方向,最后生成正确的节点次序作为K2算法的输入学习网络结构。在两个基准网络Asia和Alarm中进行实验验证,结果表明基于最大信息系数的贝叶斯网络结构学习算法可以得到接近最优的节点次序,学习到的网络结构与数据的拟合程度更好,分类准确性更高。 In order to obtain the correct node ordering,this paper presented a new Bayesian network structure learning algorithm (MICVO)which used the method based on maximal information coefficient combining with conditional independence test.First-ly,it generated an initial undirected graph through measuring dependency between variables using maximal information coeffi-cient,and introduced a penalty factorδto reduce the number of redundant edges.Then divided this undirected graph into multi-ple sub-structures to determine the direction of edges in the graph,and finally the initial ordering of nodes obtained was as input of K2 algorithm to construct the network structure.Experimental results over two benchmark networks Asia and Alarm prove that the Bayesian network structure learning algorithm based on maximal information coefficient can obtain bear optimal ordering of nodes,network structure with better degree of data matching,and higher classification accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2014年第11期3261-3265,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61172090)
关键词 贝叶斯网络 结构学习 节点次序 最大信息系数 条件独立性测试 Bayesian network(BN) structure learning node ordering maximal information coefficient(MIC) conditional in-dependence test
  • 相关文献

参考文献20

  • 1DALYR,SHENQiang,AITKENS.LearningBayesiannetworks:approachesandissues[J].TheKnowledgeEngineeringReview,2011,26(2):99-157.
  • 2FRIEDMANN,KOLLERD.BeingBayesianaboutnetworkstructure:aBayesianapproachtostructurediscoveryinBayesiannetworks[J].MachineLearning,2003,50(1-2):95-125.
  • 3KWISTHOUTJ.MostprobableexplanationsinBayesiannetworks:complexityandtractability[J].InternationalJournalofApproximateReasoning,2011,52(9):1452-1469.
  • 4CAMPOSLM DE.Independencyrelationshipsandlearningalgorithmsforsinglyconnectednetworks[J].JournalofExperimental&TheoreticalArtificialIntelligence,1998,10(4):511-549.
  • 5DeCAMPOSCP,JIQiang.EfficientstructurelearningofBayesiannetworksusingconstraints[J].JournalofMachineLearningResearch,2011,12(3):663-689.
  • 6DeCAMPOSLM,HUETEJF.Anewapproachforlearningbeliefnetworksusingindependencecriteria[J].InternationalJournalofApproximateReasoning,2000,24(1):11-37.
  • 7COOPERGF,HERSKOVITSE.ABayesianmethodfortheinductionofprobabilisticnetworksfrom data[J].MachineLearning,1992,9(4):309-347.
  • 8TEYSSIERM,KOLLERD.Orderingbasedsearch:asimpleandeffectivealgorithmforlearningBayesiannetworks[C]//Procofthe21stConferenceonUncertaintyinAI.2005:584-590.
  • 9HECKERMAND,GEIGERD,CHICKERINGDM.LearningBayesiannetworks:thecombinationofknowledgeandstatisticaldata[J].MachineLearning,1995,20(3):197-243.
  • 10ZHANGYinghua,ZHANGWensheng,XIEYuan.ImprovedheuristicequivalentsearchalgorithmbasedonmaximalinformationcoefficientforBayesiannetworkstructurelearning[J].Neurocomputing,2013,117(6):186-195.

二级参考文献20

  • 1A Aussem,S R de Morais. A conservative feature subset selection algorithm with missing data[J].Neurocomputing,2010,(4-6):585-590.
  • 2S R de Morais,A Aussem. A novel Markov boundary based feature subset selection algorithm[J].Neurocomputing,2010,(4-6):578-584.
  • 3J P Pellet,A Elisseef. Using Markov blankets for causal structure learning[J].Journal of Machine Lernning Research,2008.1295-1342.
  • 4C Borgelt. A conditional independence algorithm for learning undirected graphical models[J].Journal of Computer and Systems Sciences,2010,(01):21-33.doi:10.1016/j.jcss.2009.05.003.
  • 5Xianchao Xie,Zhi Geng. A recursive method for structural learning of directed acyclic graphs[J].Journal of Machine Iearning Research,2008.459-483.
  • 6Xuewen Chen,G,Anantha,Xiaotong Lin. Improving Bayesian network structure learning with mutual information-based node ordering in the K2 algorithm[J].IEEE Transactions on Knowledge and Data Engineering,2008,(05):1-13.
  • 7L Bouchaala,A Masmoudi,F Gargouri,A Rebai. Improving algorithms for structure learning in Bayesian networks using a new implicit score[J].Expert Systems with Applications,2010,(07):5470-5475.
  • 8E Perrier,S Imoto,S Miyano. Finding optimal Bayesian network given a super-structtre[J].Journal of Machine Learning Research,2008.2251-2286.
  • 9冀俊忠;张鸿勋;胡仁兵;刘椿年.一种基于独立性测试和蚁群优化的贝叶斯网学习算法[J]自动化学报,2009(03):281-288.
  • 10I Tsamardinos,L F Brown,C F Aliferis. The max-min hillclimbing BN structure learning algorithm[J].Machine Learning,2006,(01):31-78.

共引文献12

同被引文献37

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部