期刊文献+

激光冲击强化提高K403铸造高温合金疲劳性能 被引量:5

Laser shock processing for improving fatigue property of K403 cast superalloy
下载PDF
导出
摘要 采用YLSS-M60U型高能Nd:YAG激光器,对发动机高压涡轮叶片材料K403/K3铸造高温合金试片进行激光冲击强化处理,强化工艺参数为:激光能量3J,光斑直径2.6mm,脉宽20ns,波长1064nm,吸收保护层为铝箔,约束层为水,搭接率50%,冲击3次。强化后,在420MPa应力水平下进行了室温高周振动疲劳测试,并进行了扫描电镜观察和X射线衍射仪物相分析。研究结果表明:激光冲击强化后,试片疲劳寿命是原始状态试片寿命的2.4倍,激光冲击强化的强冲击波作用使金属发生高应变率塑性变形,以及随之产生的较大较深残余压应力,是金属疲劳性能提高的主要原因。 The high-energy Nd: YAG laser YLSS-M60U was adopted for laser shock processing on K403/K3 cast superalloy test specimen from pressure-turbine blade materials of a certain type of engine. The processing parameters are: laser energy 3 J, spot diameter 2.6 mm, laser pulse 20 ns, laser wave length 1064 nm. An aluminium foil was used as the protection coating, along with water as the restraint layer, the overlap rate reached 50% after 3 times of shocking. The high-cycle fatigue (HCF) test was conducted under the room temperature at stress level of 420 MPa as well as the SEM observation and XRD (x-Ray diffraction) analysis after laser shock processing. The study shows that the leading reasons for improving the fatigue property of metal involve that the fatigue life of the test specimen was 2.4 times longer than the original after laser shock processing, the strong shock waves plastically deform the metal with high-strain rate and generate much larger and deeper residual compressive stress.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第10期288-292,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(51205406)
关键词 铸造高温合金 高周疲劳 激光冲击强化 显微组织 残余应力 cast superalloy high-cycle fatigue laser shock processing microstructure residual stress
  • 相关文献

参考文献15

二级参考文献91

共引文献101

同被引文献81

  • 1Iordacheseu M, Valiente A, Caballero L, et al. Laser shock processing influence on local properties and overall tensile behavior o~ friction stir welded joints[J]. Surface and Coatings Technology, 2012,206(8) : 2422-2429.
  • 2Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel[J]. Corrosion Science, 2012, 60 : 223-226.
  • 3Bai Tao, Chen Peng, Guan Kaishu. Evaluation of stress corrosion cracking susceptibility of stainless steel 304L with surface nanocrystalliza- tion by small punch test[J]. Materials Science & Engineering A, 2013, $61 : 498-506.
  • 4Kalainathan S, Sathyajith S, Swaroop S. Effect of laser shot peening without coating on the surface properties and corrosion behavior of 316L steel [J]. Optics and Lasers in Engineering, 2012, 50(12): 1740-1745.
  • 5Sano Y, Yoda M, Muiai N, et el. Observation and modeling of laser peening phenomenon [J]. The Review of Laser Engineering ,1998, 26(11) : 793-799.
  • 6Lira Hyuntaeck, Kim Pilkyu, Jeong Hoemin, et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. Journal of Materials Processing Technology, 2012, 212(6) : 1347-1354.
  • 7Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing[J]. Journal of Laser Application, 1998, 10(6) : 265-279.
  • 8李曙林.飞机与发动机强度[M].北京:国防工业出版社,2007.
  • 9Zhou Liucheng, Li Yinghong, He Weifeng, et al. Deformation TC6 titanium alloys at ultrahigh strain rates during multiple laser shock pee- ning[J]. Materials Science &- Engineering A, 2013, 578: 181-186.
  • 10Maawad E, Brokmeier H G. Investigation on the surface and near-surface characteristics of Ti-2.5Cu after various mechanical surface treat ments[J]. Surface g~ Coatings Technology, 2011, 205: 3644-3650.

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部