期刊文献+

鲁棒空间约束的模糊聚类图像分割 被引量:5

Robust spatial factor based fuzzy clustering for image segmentation
原文传递
导出
摘要 目的为进一步提高分割精度,在模糊聚类的基础上引入统计信息,提出一种鲁棒型空间约束的模糊聚类分割算法。方法基于局部空间信息的先验概率与后验概率,提出一种新型空间约束项,并通过卷积操作提高运行效率;进而引入负对数联合概率作为测度函数,进一步提高算法对于各像素点所属类别的甄别能力;同时将测度函数与空间约束项整合至目标函数中,通过迭代更新各参数达到最小化目标函数的目的。结果对于合成图像的实验结果表明,本文算法对于噪声类型和噪声强度具有较强的鲁棒性;对于彩色图像的实验结果表明,在适当的特征描述符的辅助下,本文算法也能够获得令人满意的分割结果和较高的分割精度。结论本文算法克服了现有算法的缺陷,进一步提升了图像的分割精度。其适用于分割带噪声图像,且在适当纹理特征的辅助下分割彩色图像,与同类算法的比较实验结果验证了本文算法的有效性。 Objective Fuzzy clustering-based methods and statistical models have been widely used for image segmentation.To improve segmentation accuracy,this study develops a novel robust spatial factor-based fuzzy clustering algorithm by introducing statistical information into the fuzzy objective function.Method A novel spatial factor is proposed to overcome the impact of noise on images.The proposed spatial factor is constructed based on the posterior and prior probabilities by incorporating the spatial information between neighboring pixels.It acts as a linear filter that smoothens and restores noise-corrupted images.The proposed spatial factor is fast,easy to implement,and capable of preserving details.The negative logarithm joint probability,which serves as a dissimilarity function,considers the prior probabilities and thus improves the capability to identify the class of each pixel.Integrating the dissimilarity function and novel spatial factor into the fuzzy objective function,we can obtain the final segmentations by iteratively minimizing the objective function.Result The comparison results on synthetic images demonstrate that the proposed algorithm can realize accurate segmentation and strong de-noising.The comparison results on color images demonstrate that the proposed algorithm can produce satisfactory segmentation results and accuracies by utilizing the suitable feature descriptor.Conclusion The proposed algorithm address the drawbacks of current segmentation algorithms and further improve the accuracy for image segmentation.It outperforms state-of-the-art segmentation approaches in terms of accuracy.The proposed algorithm applies to image with noise and color image in aid of texture features.
出处 《中国图象图形学报》 CSCD 北大核心 2014年第10期1438-1448,共11页 Journal of Image and Graphics
基金 国家自然科学基金项目(61401209) 江苏省自然科学基金青年基金项目(BK20140790) 中国博士后科学基金项目(2013M531364)
关键词 图像分割 模糊聚类 空间信息 彩色图像 image segmentation fuzzy clustering spatial information color images
  • 相关文献

参考文献21

  • 1Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum Press,1981.
  • 2Pham D L,Prince J L.Adaptive fuzzy segmentation of magnetic resonance images[J].IEEE Transactions on Medical Imaging,1999,18 (9):737-752.
  • 3Liew A W C,Yan H,Law N F.Image segmentation based on adaptive cluster prototype estimation[J].IEEE Transactions on Fuzzy Systems,2005,13 (4):444-453.
  • 4Cai W,Chen S,Zhang D Q.Fast and robust fuzzy c-means algorithms incorporating local information for image segmentation[J].Pattern Recognition,2007,40 (3):825-838.
  • 5Chen S C,Zhang D Q.Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2004,34(4):1907-1916.
  • 6Krinidis S,Chatzis V.A robust fuzzy local information C-Means clustering algorithm[J].IEEE Transactions on Image Process,2010,19 (6):1328-1337.
  • 7Guptal L,Sortrakul T.A Gaussian mixture based image segmentation algorithm[J].Pattern Recognition,1998,31 (3):315-325.
  • 8Diplaros A,Vlassis N,Gevers T.A spatially constrained generative model and an EM algorithm for image segmentation[J].IEEE Transactions on Neural Networks,2007,18 (3):798-808.
  • 9Nikou C,Glatsanos N,Likas A.A class-adaptive spatially variant mixture model for image segmentation[J].IEEE Transactions on Image Processing,2007,16 (4):1121-1130.
  • 10Nguyen T,Wu Q.Fast and robust spatially constrained gaussian mixture model for image segmentation[J].IEEE Transactions on Circuits and Systems for Video Technology,2013,23 (4):621-635.

同被引文献109

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部