期刊文献+

有限元方法(FEM)求解奇异摄动Volterra积分微分方程 被引量:1

Finite Element Method (FEM) for Solving Singularly Perturbed Volterra Integrodifferential Equations
下载PDF
导出
摘要 运用有限元方法(FEM)求解奇异摄动Volterra积分微分方程.数值算例表明,在局部加密网格下,FEM解具有高精度性质. This paper implements finite element method (FEM) for solving singularly perturbed Volterra integrodifferential equations. Numerical results show that FEM solution has high accuracy property under layer-adapted mesh.
出处 《湖南理工学院学报(自然科学版)》 CAS 2014年第3期23-25,共3页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 国家自然科学基金项目(11371074) 湖南省教育厅一般项目(13C366) 湖南理工学院校级科研项目(2013Y11)
关键词 奇异摄动Volterra积分微分方程 局部加密网格 有限元方法 singulary perturbed Volterra integrodifferential equations layer-adapted mesh
  • 相关文献

参考文献9

  • 1J. P. Kauthen. A survey of singularly perturbed Volterra equations[J]. Appl. Numer. Math., 1997, 24:95-114.
  • 2陶霞,章敏,徐邦启.求解奇异摄动Volterra积分微分方程的LDG-CFEM耦合方法[J].湖南理工学院学报(自然科学版),2014,27(1):12-15. 被引量:2
  • 3J. S. Angell and W. E. Olmstead. Singularly perturbed Volterra integral equations[J]. SIAM J. Numer. Math., 1987, 47:1-14.
  • 4J. S. Angell and W. E. Olmstead. Singularly perturbed Volterra integral equations II [J]. SIAM J. Numer. Math., 1987, 47:1150-1162.
  • 5A. M. Bijura. Rigorous results on the asymptotic solutions of singularly perturbed nonlinear Volterra integral equations[J]. J. Integ. Equat. Appl., 2002, 14 119-149.
  • 6A. M. Bijura. Asymptotics ofintegrodifferential models with integrable kernels[J]. Int. J. Math. Sci., 2003, 25:1577-1598.
  • 7G. S. Jordan. A nonlinear singularly perturbed Volterra integrodifferential equation ofnonconvolution type[J]. Proc. Roy. Soc. Edinburgh Sect. A. 80, 1978 235-247.
  • 8G S. Jordan. Some nonlinear singularly perturbed Volterra integro-differential equations[J], in: Volterra Equations(Proc. Helsinki Sympos. Integral Equations, Otaniemi, 1978). Lecture Notes in Mathematics, Vol. 737, Springer, Berlin, 1979:107-119.
  • 9A. S. Lodge, J. B. Mcleod and J. E. Nobel. A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology[J]. Proc. Roy. Soc. Edinburgh Sect. A. 80, 1978:99-137.

二级参考文献5

  • 1J. P. Kauthen. A survey of singularly perturbed Volterra equations[J]. Appl. Numer. Math., 1997,24: 95.114.
  • 2P. Alotto, A. Bertoni, I. Perugia and D. Schotzau. A local discontinuous Galerkin method for the simulation of rotating electrical machines[J]. COMPEL,2001,20:448-462.
  • 3I. Perugia and D. Schotzau. On the coupling of local discontinuous Galerkin and conforming finite element methods[i]. J. Sci. Comput” 2001, 16(4):411-433.
  • 4P. Zhu, Z. Q. Xie and S. Z. Zhou. A uniformly convergent continuous-discontinuous Galerkin method for singularly perturbed problems ofconvection-diffusion type[J].Appl. Math. Comput., 2011,217: 4781-4790.
  • 5P. Zhu, Z. Q. Xie and S. Z. Zhou. Uniformly convergence of a coupled methodfor convection-diffusion problems in 2-D Shishkin mesh[J]. submitted.

共引文献1

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部