期刊文献+

神经网络系统预测采面来压研究 被引量:6

Study on Working Face Pressure Prediction Based on Artificial Neural Network
下载PDF
导出
摘要 通过人工神经网络方法,将影响工作面来压的主要因素作为输入层,构建BP神经网络模型,应用黄金分割算法确定最优隐含层节点数,得到最优模型,并对工作面支架平均来压阻力、平均非来压阻力、平均来压步距进行预测,分析可知预测误差在±10%,且符合正态分布,可通过多种方法提高预测精度,控制在±5%,取得了较好的预测结果精度,对于指导工作面的安全生产具有重要意义。 Based on the amficial neural network, the factors affecting the face pressure was set as input layers, and the BP neural network was set up, through gold segmentation algorithm defined the proper nodes, got the optimal model , and predicted the resistance pressure strength, the resistance of un-pressure strength and pressure step, analysis showed that the error controlled in the range of -10%--10%, and the error were normally distributed, through many ways to improve the prediction accuracy, the average can control the prediction accuracy in the range of -5% --5%, which can obtain a better predict accuracy, and possessed great significance to the safety production of the working face.
出处 《煤炭与化工》 CAS 2014年第8期37-40,共4页 Coal and Chemical Industry
关键词 BP网络 来压影响因素 来压预测 误差分析 BP network factors affecting the pressure pressure prediction error analysis
  • 相关文献

参考文献7

二级参考文献36

共引文献229

同被引文献58

  • 1姜福兴,宋振骐,宋扬,杨永杰,赵卫东,钱鸣高.采场来压预测预报专家系统的基础研究[J].煤炭学报,1995,20(3):225-228. 被引量:13
  • 2董辉,傅鹤林,冷伍明.支持向量机的时间序列回归与预测[J].系统仿真学报,2006,18(7):1785-1788. 被引量:63
  • 3刘金辉,李堂军,孙承爱,任艳伟.基于神经网络的工作面来压预报预警系统研究[J].计算机仿真,2006,23(11):287-290. 被引量:1
  • 4Stephen C P, Robert J G,Jonathan W E. Application of theHilbert-Huang Transform to the Analysis of Molecular Dy-namics Simulations[J].Journal of Physical Chemistry,2003 ,107:4869-4876.
  • 5Burges C. A tutorial on support vector machines for patternrecognition [ J ]. Data Mining and Knowledge Discovery,1998,2(2):121-127.
  • 6PAN J S,HONG M Z, ZHOU Q F, et al. Integrated appli-cation of uniform design and least-squares support vectormachines to transfection optimization[ J ]. BMC Biotechnolo-gy,2009^9(1) :52-57.
  • 7Rubio G,Pomares H,Rojas I,et al. A heuristic method forparameter selection in LS-SVM . Application to time seriesprediction[J]. J of Froecasting,2011 .27(3) :725-739.
  • 8Huang N E. Shen Z,Long S R, et al.The empirical modedecomposition and the Hilbert spectrum for nonlinear andnonstationary time series analysis[J]. Ann Rev Fluid Mech,1999,31(11):321-325.
  • 9RUBIO G,POMARES H,ROJAS I,et al.A heuristic method for parameter selection in LS-SVM:Application to time series prediction[J].Int J of Froecasting,2011,27(3):725-739.
  • 10STEPHEN C P,ROBERT J G,JONATHAN W E.Application of the Hilbert-Huang Transform to the Analysis of Molecular Dynamics Simulations[J].Journal of Physical Chemistry,2003,107:4869-4 876.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部