期刊文献+

Super Jaulent-Miodek hierarchy and its super Hamiltonian structure~ conservation laws and its self-consistent sources 被引量:2

Super Jaulent-Miodek hierarchy and its super Hamiltonian structure~ conservation laws and its self-consistent sources
原文传递
导出
摘要 A super Jaulent-Miodek hierarchy and its super Hamiltonian structures are constructed by means of a kind of Lie super algebras and super trace identity. Moreover, the self-consistent sources of the super Jaulent-Miodek hierarchy is presented based on the theory of self-consistent sources. Further- more, the infinite conservation laws of the super Jaulent-Miodek hierarchy are also obtained. It is worth noting that as even variables are boson variables, odd variables are fermi variables in the spectral problem, the commutator is different from the ordinary one. A super Jaulent-Miodek hierarchy and its super Hamiltonian structures are constructed by means of a kind of Lie super algebras and super trace identity. Moreover, the self-consistent sources of the super Jaulent-Miodek hierarchy is presented based on the theory of self-consistent sources. Further- more, the infinite conservation laws of the super Jaulent-Miodek hierarchy are also obtained. It is worth noting that as even variables are boson variables, odd variables are fermi variables in the spectral problem, the commutator is different from the ordinary one.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第6期1367-1379,共13页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant No. 11271008).
关键词 Super Jaulent-Miodek hierarchy self-consistent sources fermivariables conservation law Super Jaulent-Miodek hierarchy, self-consistent sources, fermivariables, conservation law
  • 相关文献

参考文献7

二级参考文献116

  • 1MA WENXIU.BINARY NONLINEARIZATION FOR THE DIRAC SYSTEMS[J].Chinese Annals of Mathematics,Series B,1997,18(1):79-88. 被引量:8
  • 2Sun H Z and Han Q Z 1999 Lie Algebras and Lie Super Algebras and Their Applications in Physics (Beijing: Peking University) p 157.
  • 3Wang P, Fang J H and Wang X M 2009 Chin. Phys. Lett. 26 034501.
  • 4Pang T, Fang J H, Zhang M J, Lin P and Lu K 2009 Chin. Phys. Lett. 26 070203.
  • 5Jia X Y and Wang N 2009 Chin. Phys. Lett 26 080201.
  • 6Fang J H, Zhang M J and Lu K 2009 Chin. Phys. Lett. 26 110202.
  • 7Zhang M J, Fang J H, Lu K and Zhang K J 2009 Chin. Phys. Lett. 26 120201.
  • 8Tu G Z 1989 J. Math. Phys. 30 330.
  • 9Tu G Z 1990 J. Phys. A: Math. Gen. 23 3903.
  • 10Ma W X 1992 Chin. J. Comtemp. Math. 13 79.

共引文献137

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部