期刊文献+

数字图像的混沌加密方案 被引量:1

A Scheme of Chaotic Encryption Scheme of Digital Images
下载PDF
导出
摘要 为了研究数字图像网络传输的安全性问题,提出一种基于混沌系统的有效的加密方案.构建一种新的双logistic混沌系统作为信号源,选取合适的密钥,经适当处理后得到图像加密序列.综合像素位置置乱和灰度值替代法的思想,用加密序列进行图像加密.对直方图、密钥空间、初值敏感性以及加密速度等指标进行了分析,结果表明,该方案可以有效地运用于数字图像加密,并具有良好的加密和解密性能. To study the security problems of network transmission of digital images, an effective encryption scheme based on a chaotic system was proposed in this paper. One kind of new chaotic systems was constructed and applied to encryption. Based on the chaotic system and suitable treatment, the image encryption sequences were obtained. The pixel position scrambling method and gray value substitution method were synthetically used in the image encryption with encryption sequences. The results reveal that the scheme can be effectively applied to the digital image encryption. Some indexes, such as the histogram, the initial value sensitivity, the key space and the encryption speed, were analyzed to show that the algorithm has good encryption performance.
出处 《南通大学学报(自然科学版)》 CAS 2014年第3期13-16,共4页 Journal of Nantong University(Natural Science Edition) 
基金 国家自然科学基金项目(61174066) 南通市应用研究计划项目(BK2013062) 南通大学杏林学院科研基金项目(2012K109) 南通大学研究生科技创新计划项目(YKC13083)
关键词 数字图像 混沌系统 加密方案 灰度值 digital image chaotic systems encryption scheme gray level
  • 相关文献

参考文献12

二级参考文献83

共引文献78

同被引文献15

  • 1LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2) : 130-141.
  • 2ROSSLER O E. An equation for continuous chaos[J]. Physics Letters A, 1976, 57(5):397-398.
  • 3CHEN G R, UETA T. Yet another chaotic attractor[J]. In- ternational Journal of Bifurcation and Chaos, 1999, 9 (7) : 1465-1466.
  • 4YANG Q G, CHEN G R. A chaotic system with one saddle and two stable node-foci[J]. International Journal of Bifur- cation and Chaos, 2008, 18(5):1393-1414.
  • 5LI X F, CHU Y D, ZHANG J G, et al. Nonlinear dynamics and circuit implementation for a new Lorenz-like attractor [J]. Chaos, Solitons and Fractals, 2009, 41(5):2360-2370.
  • 6JIANG B, HAN X J, BI Q S. Hopf bifurcation analysis in the T system[J]. Nonlinear Analysis:Real World Applica- tions, 2010, 11 ( 1 ) : 522-527.
  • 7LIU Y J, YANG Q G. Dynamics of a new Lorenz-like chaotic system [ J ]. Nonlinear Analysis : Real World Ap- plications, 2010, 11 (4) :2563-2572.
  • 8LI X Y, OU Q J. Dynamical properties and simulation of a new Lorenz-like chaotic system[J]. Nonlinear Dynamics, 2011, 65(3):255-270.
  • 9LIU A M, HUANG Y. Some new insights into the Liu sys- tem[J]. Nonlinear Dynamics, 2013, 73(3):1621-1629.
  • 10WANG J Z, ZHANT Q, CHEN Z Q, et al. Local bifurca- tion analysis and ultimate bound of a novel 4D hyper- chaotic system [J ]. Nonlinear Dynamics, 2014, 78 (4) : 2517-2531.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部