期刊文献+

近邻标准化样本核特征量驱动的间歇过程故障检测 被引量:6

Fault detection based on kernel feature statistics of samples standardized with nearest neighborhood for batch process
原文传递
导出
摘要 针对间歇过程的多工况和非线性特征,提出一种基于近邻特征标准化(Nearst Neighborhood Feature Standardization,NNFS)样本的核特征量(Kernel Feature Statistics,KFS)故障检测方法。首先,将间歇过程数据按批次方向展开构成二维建模样本,计算每个样本的局部近邻,采用近邻特征实现标准化,提取多工况批次之间的正常偏差,克服Z-score标准化将多工况过程数据看作一个整体而造成的不准确问题。其次,通过核方法将经过标准化后的样本映射到高维空间,在核空间建立监视模型,计算特征量,并提出采用方差分析(variance,VAR)方法确定核参数,通过核密度估计法确定统计控制限。最后,在青霉素发酵过程进行仿真研究,通过比较表明了所提方法的有效性。 For the multimode and nonlinear characteristics of batch processes, a fault detection method based on kernel feature statistics of samples standardized with nearest neighborhood is proposed. Firstly, batch process is unfolded along batch direction and modeling samples with two dimensions are constructed, local neighborhoods are computed for every sample, standardization is realized with neighborhood feature (mean, standard deviation) and normal errors between batches are got, inaccurate problem caused by Z-score standardization in which multimode data is looked as a mode was overcame. Secondly, samples standardized are mapped high space by kernel method. In kernel space, monitoring model is built and statistics are computed. Furthermore, kernel parameters are determined by variance (VAR) method and control limits of statistics was settled down by Kernel density estimation method. The simulation is realized on penicillin fermentation process and the comparing results show the effectiveness of the proposed method.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2014年第10期1157-1161,共5页 Computers and Applied Chemistry
基金 国家自然科学基金重点资助项目(61034006) 国家自然科学基金资助项目(61174119 60774070) 辽宁省教育厅科学研究项目(L2012139 L2013155) 辽宁省博士启动基金项目(20131089)
关键词 近邻特征 核主元分析 多工况间歇过程 故障检测 非线性 nearest neighborhood feature (NNF) kernel principal component analysis (KPCA) multimode batch process fault detection nonlinear
  • 相关文献

参考文献13

  • 1Zhou Donghua, Li Gang, Li Yuan. Data-driven Based Process Fault Detection and Diagnosis Technology. Beijing: Science Press, 2011.
  • 2Mac Gregor J F, Cinar A. Monitoring, fault diagnosis, fault-tolerant control and optimization: data driven methods. Computers and Chemical Engineering, 2012, 47:111-120.
  • 3Li G, Qin S J, Zhou D H. Geometric properties of partial leastsquares for process monitoring. Automatica, 2010, 46( 1): 204-210.
  • 4Wold S, Geladi P, Esbensen K. Multi-way principal components and PLS analysis. Journal of Chemometrics, 1987, 1(1):41-56.
  • 5Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994, 40(8):1361-1375.
  • 6Lee J.M, Yoo C, Choi S.W. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59:223-234.
  • 7Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, 2000.
  • 8Qin S J. Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 2012, 36(2):220-234.
  • 9Xie X, Shi H B. Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace. Chinese Journal of Chemical Engineering, 2012, 20(6): 1174-1179.
  • 10Zhao C H, Yao Y, Gao F R, et al. Statistical analysis and online monitoring for multimode processes with between-mode transitions. Chemical Engineering Science, 2010, 65(22): 5961-5975.

共引文献4

同被引文献35

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部