期刊文献+

用于复杂环境下的疲劳检测系统人眼检测方法 被引量:2

Eye Detection Method for Fatigue Detection System under Complex Environment
下载PDF
导出
摘要 针对光照、眼镜等对驾驶员人眼检测的影响,提出采用霍夫变换和神经网络分类器进行人眼检测.通过应用虹膜几何信息和对称性,选择可能包含人眼的两个候选区域.运用边缘检测算子和MAE进行人眼粗定位.然后在此基础上采用B-P神经网络进行人眼精确定位.针对三种不同情况,即不同光照、不同背景和不同肤色的人拍摄6组视频图像,采用matlab7.0进行3组仿真实验,实验结果表明该算法对复杂情况的人眼检测具有较强的鲁棒性.大大提高人眼检测准确率. This paper focuses on the effects of light condition, glass-wearing on driver’s eye, and proposes a way of human eye detection by Hough transform and neural network classifier. Firstly, two eye candidate regions were selected based on the geometry and symmetry of the iris. Then, coarse human eye positioning is conducted by edge detection and MAE operator. At last, the B-P neural network was utilized to pinpoint the human eye. For six groups of video images captured in three different situations, that is, different light, different backgrounds and different skin color, three groups were performed simulation experiment using matlab7.0. Results show that the algorithm for complex situations human eye detection has a strong robustness, improve the accuracy of eye detection greatly.
出处 《计算机系统应用》 2014年第11期256-263,共8页 Computer Systems & Applications
基金 2013年浙江省教育厅科研项目(Y201330164) 2013年温州市科技局科技计划(2013G0020) 2013年浙江省高等教育课堂教学改革研究项目(kg2013851) 2013年浙江省大学生科技创新项目(2013R455001)
关键词 霍夫变换 神经网络 边缘检测算子 虹膜检测 人眼检测 Hough transform neural network edge detection operator iris detection eye detection
  • 相关文献

参考文献8

  • 1Torkkola K, Massey N, Wood C. Driver inattention detectionthrough intelligent analysis of readily available sensors. Proc.of IEEE Conference on Intelligent Transportation Systems.Washington, DC. October 2004. 326-331.
  • 2Yang Q Lin Y,Bhattacharya P. A driver fatigue recognitionmodel using fusion of multiple features. IEEE InternationalConference on Systems, Man and Cybernetics. Hawai USA.October 2005.1777-1784.
  • 3Park S,Trivedi M. Driver activity analysis for intelligentvehicles: issues and development framework. Proc. of IEEEIntelligent Vehicles Symposium. Las Vegas, USA. June 2005.795-800.
  • 4D'Orazio T, Guaragnella C,Leo M, Distante A. A newalgorithm for ball recognition using circle Hough transformand neural classifier. Pattern Recognition, 2004,37: 393-408.
  • 5Flores MJ, Anningol JM, de la Escalera A. Driver drowsinesswarning system using visual information for both diurnal andnocturnal illumination Conditions. EURASI? Journal onAdvances in Signal Processing, 2010, Article ID 438205.
  • 6李智,谢剑斌,陈章永,程永茂,刘通.基于Adaboost的红外视频图像疲劳检测算法[J].计算机工程与科学,2012,34(5):107-111. 被引量:4
  • 7陈勇,黄琦,刘霞,张昌华.一种全天候驾驶员疲劳检测方法研究[J].仪器仪表学报,2009,30(3):636-640. 被引量:25
  • 8鲁松,乔陆.驾驶员疲劳状态检测仿真研究[J].计算机仿真,2012,29(11):378-381. 被引量:1

二级参考文献30

共引文献27

同被引文献13

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部